Skip to main content

ICON/MIGHTI as a Probe of Nightglow Emissions

Daniel M. Matsiev, Center for Geospace Studies, SRI International, Menlo Park, CA, USA
Robert M. Robertson, Center for Geospace Studies, SRI International, Menlo Park, CA, USA
Ennio Sanchez, Center for Geospace Studies, SRI International, Menlo Park, CA, USA
Abigail Fagan, Morehead State University, Morehead, KY, USA
Scott L. England, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Christoph R. Englert, Space Science Division, U.S. Naval Research Laboratory, Washington, D.C., USA
Brian J. Harding, Space Sciences Laboratory, University of California, Berkeley, CA, USA
John M. Harlander, Space Systems Research Corporation, Alexandria, VA, USA
Thomas J. Immel, Space Sciences Laboratory, University of California, Berkeley, CA, USA
Kenneth D. Marr, Space Science Division, U.S. Naval Research Laboratory, Washington, D.C., USA
Michael H. Stevens, Space Science Division, U.S. Naval Research Laboratory, Washington, D.C., USA
Konstantinos S. Kalogerakis, Center for Geospace Studies, SRI International, Menlo Park, CA, USA
First Author's Affiliation
Center for Geospace Studies, SRI International
Abstract text:

The Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) instrument aboard NASA’s Ionospheric Connection Explorer (ICON) satellite was designed for measurements of thermospheric winds and temperature profiles [1]. For the wind determination, MIGHTI used the Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopic technique to measure the Doppler effect of the atomic oxygen O(1S) – O(1D) green and O(1D) – O(3P) red line emissions at 557.7 nm and 630.0 nm, respectively [2]. For the temperature profiles, MIGHTI used multispectral measurements of the O2 Atmospheric band emission at three different wavelength regions and relied on the dependence of the band’s rotational line structure on the local temperature [3].

Our research aims to expand the contributions of the MIGHTI instrument, advance knowledge of nightglow emissions, and improve retrievals of nighttime atomic oxygen from both the atomic oxygen green line emission and the O2 Atmospheric band emission. Accurate nighttime O-atom densities are required for modeling the chemistry and energy budget of the upper atmosphere. Just as important, a detailed understanding of the relationship between atmospheric composition and the intensity of observed nightglow emissions is essential for modeling and understanding gravity wave propagation and dissipation.

We will present a progress report on our efforts to calibrate the ICON/MIGHTI signals and use them to better understand key mesospheric nightglow emissions.

References
1. Immel, T. J., S. L. England, S. B. Mende, R. A. Heelis, C. R. Englert, J. Edelstein, H. U. Frey, E. R. Taylor, W. W. Craig, S. E. Harris, M. Bester, G. S. Bust, G. Crowley, J. M. Forbes, J.-C. Gérard, J. M. Harlander, J. D. Huba, B. Hubert, F. Kamalabadi, J. J. Makela, A. I. Maute, R. R. Meier, C. Raftery, R. Rochus, O. H. W. Siegmund, A. W. Stephan, G. R. Swenson, S. Frey, D. L. Hysell, A. Saito, K. A. Rider and M. M. Sirk, Space Sci. Rev. 214(13), 1-36 (2018).
2. Englert, C. R., J. M. Harlander, K. D. Marr, B. J. Harding, J. J. Makela, T. Fae, C. M. Brown, M. V. Ratnam, S. V. B. Rao, T. J. Immel, Space Sci. Rev. 219(3), 27 (2023).
3. Stevens, M. H., C. R. Englert, J. M. Harlander, K. D., Marr, B. J. Harding, C. C. Triplett, M. G. Mlynczak, T. Yuan, J. S. Evans, S. B. Mende, T. J. Immel, Space Sci. Rev. 218(8), 67 (2022).
This work is supported by NASA’s GOLD-ICON Guest Investigators Program under Grant 80NSSC22K0172.

Non-Student
Poster category
MLTS - Mesosphere or Lower Thermosphere General Studies