
Accelerating SuperDARN
File I/O with Rust
REMINGTO N ROHEL

SNAKES ON A SPACESHI P: CEDAR-GEM WORKSH OP

JUNE 23-27, 20 25 DES MOI NES IA , USA

Outline
• Motivation

• Writing Rust code for Python

• Testing

• Benchmarking

2

Motivation
• pyDARNio – Python package for reading/writing
SuperDARN files
•Used by pyDARN which plots SuperDARN data

•Very slow (>10s to read 1 day of data, i.e. 100-600 MB of data)

• Scientists often want years of SuperDARN data

• Goal: Speed up pyDARNio

3

pyDARNio
https://pydarnio.readthedocs.io/en/latest/ and https://github.com/SuperDARN/pyDARNio

Basic usage:

4

import pydarnio
file = "path/to/file"

read from file
reader = pydarnio.SDarnRead(file)
fitacf_data = reader.read_fitacf()

write to file
writer = pydarnio.SDarnWrite("/path/to/file")
writer.write_fitacf(fitacf_data)

https://pydarnio.readthedocs.io/en/latest/
https://github.com/SuperDARN/pyDARNio

DMAP Format
• Bespoke binary data format

• 3 data structures:
1. Record

2. Scalar

3. Vector

5

https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/

https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/
https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/
https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/
https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/
https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/
https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/
https://radar-software-toolkit-rst.readthedocs.io/en/latest/references/general/dmap_data/

Accelerating with Rust
• compiled programming language

• C-like speed but more guardrails, like enforced
memory safety

• 4 main types:
• Primitives, e.g. int8, float32, str, bool
• Structs (can have associated methods)
• Enums (can have associated methods)
• Traits, which Structs or Enums can inherit

• Easy to create Python bindings for Rust
packages. Users can clone your project and compile
locally, or the developer generates wheel files and
uploads to PyPI for many OS's and CPUs (using pyO3
and maturin)

• Python API exposed, but installs Rust code behind-
the-scenes in wheel file

6

Inside the Rust codebase
https://github.com/SuperDARNCanada/dmap

use crate::error::DmapError;
use crate::formats::dmap::{GenericRecord, Record};
use pyo3::prelude::*;

/// Functions for SuperDARN DMAP file format I/O.
#[pymodule]
fn dmap(m: &Bound<'_, PyModule>) -> PyResult<()> {
 m.add_function(wrap_pyfunction!(read_dmap_py, m)?)?;
 Ok(())
}

7

|
| Imports
| << pyo3 is the crate for converting to Python

<< Docstring for the library
<< Decorator that denotes this as a module for use
in Python
| Special function which specifies name + members
| of Python module
| Members (functions or classes) are added here

https://github.com/SuperDARNCanada/dmap

Inside the Rust codebase
/// Reads a generic DMAP file, returning a list of dictionaries containing the
fields.
#[pyfunction]
#[pyo3(name = "read_dmap")]
#[pyo3(text_signature = "(infile: str, /)")]
fn read_dmap_py(infile: PathBuf) -> PyResult<Vec<IndexMap<String, DmapField>>>
{
 read_generic::<GenericRecord>(infile).map_err(PyErr::from)
}

/// Reads the data from infile into a collection of `IndexMap`s
fn read_generic<T: for<'a> Record<'a> + Send>(
 infile: PathBuf,
) -> Result<Vec<IndexMap<String, DmapField>>, DmapError> {
 match T::read_file(&infile) {
 Ok(recs) => {
 let new_recs = recs.into_iter().map(|rec| rec.inner()).collect();
 Ok(new_recs)
 }
 Err(e) => Err(e),
 }
}

8

<< Docstring for the Python function

<< Decorator that denotes this as a function usable in Python
<< Specifies the name the Python function will have
<< Specifies the parameter hints for the function
| The Rust function, takes some input and returns special Py types
|
| Calls your Rust code to do something
|

|
| Rust function which is called above, has type bounds "T"
|
| Returns special "Result" type, either Ok or Err
| Calls method of type "T" (method specified in "Record" trait)
|
| Matches return type of T::read_file(), either Ok or Err
| and does some computation on the results
|
|
| Implicitly returns output of match statement
|

Parallelization
use rayon::prelude::*;

fn read_records(mut dmap_data: impl Read) -> Result<Vec<Self>, DmapError> {

 // some setup here

 let mut dmap_results: Vec<Result<Self, DmapError>> = vec![];

 // single-threaded
 dmap_results.extend(
 slices
 .iter_mut()
 .map(|cursor| Self::parse_record(cursor)),
);

 // parallelized
 dmap_results.par_extend(
 slices
 .par_iter_mut()
 .map(|cursor| Self::parse_record(cursor)),
);
}

Very similar code, only have to change a few lines to get full CPU utilization!

9

How to get it to Python?
Cargo.toml:

 [lib]
 name = "dmap"
 # "cdylib" is necessary to produce a shared library for Python to import from.
 crate-type = ["cdylib", "rlib"]

 [dependencies]
 pyo3 = { version = "0.22.5", features = ["extension-module", "indexmap", "abi3-py38"] }

10

• Use maturin, run maturin develop to build and install in your
virtual environment (https://www.maturin.rs/)

• maturin-action builds GitHub action workflows for automating
builds + shipping to PyPI for a range of OS's and CPUs
(https://github.com/PyO3/maturin-action)

• This work in dmap project:
https://github.com/SuperDARNCanada/dmap

pyproject.toml:

 [build-system]
 requires = ["maturin>=1,<2", "numpy<3"]
 build-backend = "maturin"

 [tool.maturin]
 bindings = "pyo3"
 profile = "release"
 compatibility = "manylinux2014"
 auditwheel = "repair"
 strip = true

https://www.maturin.rs/
https://github.com/PyO3/maturin-action
https://github.com/PyO3/maturin-action
https://github.com/PyO3/maturin-action
https://github.com/SuperDARNCanada/dmap

Python side
>>> import dmap
>>> dmap.__doc__
'Functions for SuperDARN DMAP file format I/O.'

>>> dmap.read_dmap.__doc__
'Reads a generic DMAP file, returning a list of dictionaries containing
the fields.'

>>> dmap.read_dmap.__text_signature__
'(infile: str, /)'

Functions are re-exported by pyDARNio for seamless integration
with SuperDARN software

11

Testing
#[test]
fn read_write_generic() {
 // [testing code here]
}

• Functions decorated with the #[test] macro are auto-detected
when cargo test is invoked.

• Tests can be put in the same file next to where a function is defined.

• Tests can be embedded in docstrings

• Only functions exposed via Python API can be tested in Python – everything
else must be tested in Rust

12

Benchmarking (criterion.rs)
use criterion::{criterion_group, criterion_main, Criterion};

fn criterion_benchmark(c: &mut Criterion) {
 c.bench_function("Read RAWACF", |b| b.iter(|| read_rawacf()));
}

fn read_rawacf() -> Vec<RawacfRecord> {
 let file = File::open("tests/test_files/test.rawacf").expect("Test file not found");
 RawacfRecord::read_records(file).unwrap()
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

• Run with cargo bench

• Generates HTML report with statistics and plots, compares performance to
previous benchmarks

• Could also benchmark using the Python API, e.g. using hyperfine

13

https://bheisler.github.io/criterion.rs/book/index.html

Benchmarking
(using hyperfine
https://github.com/sharkdp/hyperfine)

File type # of records Size (MB)

Small rawacf 1423 50

Small fitacf 1423 7.1

Large rawacf 30592 814

Large fitacf 30592 141

14

https://github.com/sharkdp/hyperfine

Notes on benchmarking
The Rust code is faster than C equivalent, even single-threaded
• slower when passing the data from Rust to Python

All tests conducted on:
• OS: openSUSE Leap 15.4

• CPU: Intel(R) Core(TM) i7-8700K @ 3.70 GHz, 12 core

• Python version: 3.8

• Files on SSD with SATA connection

15

Summary
• Rust can be a great tool for accelerating Python packages

• Testing is simple, parallelization is simple, benchmarking is
simple

• For pyDARNio, saw up to 20x speedup with Rust

• Tools exist for automating builds and publishing to PyPI,
making installation easy for everyone

16

Thanks to Funding Agencies

17

Links

pyDARNio documentation:
https://pydarnio.readthedocs.io/en/latest/

Rust code:
https://github.com/SuperDARNCanada/dmap

18

https://pydarnio.readthedocs.io/en/latest/
https://github.com/SuperDARNCanada/dmap

	Slide 1: Accelerating SuperDARN File I/O with Rust
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: pyDARNio
	Slide 5: DMAP Format
	Slide 6: Accelerating with Rust
	Slide 7: Inside the Rust codebase https://github.com/SuperDARNCanada/dmap
	Slide 8: Inside the Rust codebase
	Slide 9: Parallelization
	Slide 10: How to get it to Python?
	Slide 11: Python side
	Slide 12: Testing
	Slide 13: Benchmarking (criterion.rs)
	Slide 14: Benchmarking (using hyperfine https://github.com/sharkdp/hyperfine)
	Slide 15: Notes on benchmarking
	Slide 16: Summary
	Slide 17: Thanks to Funding Agencies
	Slide 18: Links

