GCMprocpy A TIE-GCM / WACCM-X postprocessing tool

Nikhil Rao nikhilr@ucar.edu

Jun 2025

What is GCMprocpy?

- A Python package designed for post-processing and visualization of outputs from the TIE-GCM and WACCM-X models.
- Facilitates data analysis and plot generation.

TIE-GCM

WACCM -X

Motivation Behind GCMprocpy

- Legacy Tools:
 - tiegcmidl
 - tiegcmprocf90
- Challenges with Legacy Tools:
 - Steep learning curve for new users
 - Limited flexibility and integration with modern data analysis workflows
- Why GCMprocpy?
 - Offers a more user-friendly and versatile platform for researchers
 - Leverages Python's extensive scientific libraries for enhanced data analysis.

Evolution of GCMprocpy

- Origins as TIEGCMpy:
 - Initially developed as TIEGCMpy, a Python 3 tool for post-processing and plotting TIE-GCM outputs.
- Transition to GCMprocpy:
 - Renamed and restructured to GCMprocpy to reflect broader capabilities, including support for multiple models like WACCM-X.
 - Adopted a modular design with separate components for different functionalities.
 - Added a Graphical User Interface (GUI) for users preferring point-and-click over scripting.

GCMprocpy Timeline`

GCMprocpy Features

- Usage Methods
 - Graphical User Interface (GUI) ->
 - Python Function calls (API)

datasets = gy.load_datasets(directory, dataset_filter)
variable_name = 'TN'
value_of_mtime = [360, 0, 0, 0]
pressure_level = 4.0
unit_of_variable = 'K'
intervals = 20
plot = gy.plt_lat_lon(datasets, variable_name, mtime=value_of_mtime,
level=pressure_level, variable_unit=unit_of_variable,
contour_intervals=intervals)

Command line Interface (CLI)

gcmprocpy --plot_type lat_lon --directory /glade/work/nikhilr/work/test_db/2.0/tiegcm_res5.0_decsol_smax/hist --dataset_filter sech --output_format jpeg var TN -zp -4.00 -mtime 360 0 0

000			X GCMProcPy	
ataset				
Directory Enter di	rectory or file path			
Directory. Enter di	rectory of the path	-		
Dataset Filter: Optiona	il filter (e.g., 'sech')			
Lo	oad Datasets			
lot Type				
Lat vs Lon		-		
Variable Name:		-		
Time (ISO):		-		
Level		T		
Mariable Daits				
variable onic				
Center Longitude:				
Contour Intervals:				
Contour Value:				
Symmetric Interval:				
Colormap:				
Colormap Min:				
Colormap Max:				
Line Color:				
Coastlines:				
Nightshade:				
GM Equator:				
Latitude Min:				
Latitude Max:				
Longitude Min:				
Longitude Max				
Clean Plot:				

GCMprocpy GUI

GCMprocpy Features

- Types of functions
 - Data exploration
 - Inspect variables, metadata, and file structures
 - Data manipulation
 - Subset, merge, and transform model outputs
 - Data arrays generation
 - Create structured arrays
 - Emissions calculation
 - Compute emissions
 - Plotting routines
 - Create static/interactive images data visualization
 - Movie routines

GCMprocpy

NCAR

 Create time-lapse animations for dynamic data visualization [] # List of timestamps in the smax dataset
 gy.time_list(mareq_smax_ds)[0:5]

Inumpy.datetime64('2002-03-21T01:00:00.00000000'), numpy.datetime64('2002-03-21T02:00:00.000000000'), numpy.datetime64('2002-03-21T03:00:00.000000000'), numpy.datetime64('2002-03-21T04:00:00.000000000'), numpy.datetime64('2002-03-21T05:00:00.000000000')]

Listing timestamps in the dataset

Plot Types

NEUTRAL TEMPERATURE TN (K)

NEUTRAL TEMPERATURE TN (K) UT=0.0 LAT=-62.5 SLT=0.0Hrs

Latitude vs Longitude

Pressure Level vs Variable

Plot Types

NEUTRAL ZONAL WIND (+EAST) UN (cm/s) UT=0.0 LON=0.0 SLT=0.0Hrs

Longitude

GCMprocpy

NCAR UCAR

Plot Types

ELECTRON DENSITY NE (cm-3) LAT=-62.5 SLT=0.0Hrs

GCMprocpy Features

Automated Documentation

- Uses Autodoc, a Sphinx extension that automatically generates documentation from Python docstrings.
- It reduces manual effort and ensures that documentation stays in sync with the codebase
- GCMprocpy uses Google Style docstrings

		[docs]
def	<pre>dim_list(datasets):</pre>	[uucs]
	Retrieves a sorted list of unique dimension names across all datasets.	
	Args: datasets (list of tuples): A list of tuples, where each tuple contains an xarray	∕ datas€
	Returns: list: A sorted list of unique dimension names across all datasets.	
	<pre>unique_dims = set()</pre>	

gcmprocpy.data_parse.dim_list(datasets) [source]

Retrieves a sorted list of unique dimension names across all datasets.

Parameters:	datasets (list of tuples) – A list of tuples, where each tuple contains an xarray
	dataset and its filename.
Returns:	A sorted list of unique dimension names across all datasets.
Return type:	list
	Parameters: Returns: Return type:

Docstring to documentation on RTD

GCMprocpy Stucture`

GCMprocpy Future Development

- Building a robust testing framework
- Enabling movie routines on GUI
- Adding polar plots to plotting routines
- Adding additional emissions calculations
- Performance optimization to data array creation

GCMprocpy Links`

Google Collab Tutorial Github

RTD Documentation

ex.html

Thank you

Google Collab Tutorial

Github https://github.com/NCAR/gc mprocpy/

RTD Documentation https://gcmprocpy.readthedo cs.io/en/latest/index.html

