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lon Outflow Modeling and CGS

CGS Science Theme #2:
Stormtime mesoscale ionospheric
structure and global geospace
mass circulation
» Formation of polar cap patches
and tongues of ionization
* Feedback of ionospheric
structure to the magnetosphere
through ion outflows
lonosphere/Polar Wind
Model (IPWM) is the
primary component of the
MAGE model for
high-latitude ionosphere
structure and ion outflow.
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HIDRA: IPWM Code Modernization

High-Latitude lonosphere Dynamics for Research Applications (HIDRA):

* Adopt advanced numerical methods from GAMERA
 High-order finite volume reconstruction schemes
 Careful treatment of grid-singularity at the pole
« Staggered grids for densities and electric fields

 Code modernization to interface to MAGE framework

High-resolution simulations in this presentation:
* QOct-res GAMERA-REMIX: 0.5 x 0.5 degrees in ionosphere
* Provides convection potential and particle precipitation to HIDRA
* QOct-res HIDRA: (64 lat x 256 lon x 76 alts). ~65 km horizontal resolution
« Equatorward boundary at L=2.8 (53.3 ILAT)
« 7th-order spatial reconstruction
« 3rd-order time stepping



Polar Cap Structures in HIDRA Outputs
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«~ Structured Convection 12.

* Lockwood & Carlson (1992)
mechanism

* Variable Particle Precipitation

* Temperature Dependent Chemistry

« 0¥ + N, - NO* + N speeds up at high
temperature, accelerating
recombination

How can we distinguish different mechanisms?
» Perform mechanism denial numerical experiments



Testing Smoothed Convection

Numerical Experiments: Apply moving average (boxcar filter) to
convection potential to smooth out convection variations.
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Comparison With Different Convection
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Experiments with
Soft Precipitation

« Experiments with
enabling Broad-band
Electron (BBE)
precipitation.

« Soft BBE precipitation
primarily affects densities
at ~200 km.
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Experiments
with lon
Chemistry

Replaced Ti with Tn in the
following chemical reactions:

¢« O*+N,>NO*+N

¢« 0Y+0,-03+0

These reactions normally speed
up in response to high Ti (Joule
heating)
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Past Work on “Stirring” During By Flips
| Sojka et al. (1993)

Modeling polar cap F-region
patches using time varying
convection

https://doi.org/10.1029/93GL0
1347



https://doi.org/10.1029/93GL01347
https://doi.org/10.1029/93GL01347

Problems Reproducing Patch Elongations

» Patches are commonly observed
elongated in the cross-flow
direction (~ east-west)

» Variable convection simulations
produce twisted structures
elongated in the along-flow
direction (~ north-south)

* Are we missing something
fundamental about convection?

* Bursty reconnection?
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