CEDAR GDC Workshop June 27, 2023

The Comprehensive Auroral Precipitation Experiment (CAPE) for GDC

<u>Daniel Gershman¹ (PI), Marilia Samara¹ (DPI), Eftyhia Zesta¹ (IS), Tom Sotirelis², Jorg-Micha Jahn³, Robert Michell¹, George Khazanov¹, Alex Glocer¹, Denny Oliveira¹, Aaron Ridley⁴, Stan Solomon⁵, <u>David Knudsen⁶</u>, Levon Avanov¹, Alex Chartier², James Burch³, Keiichi Ogasawara³, Kevin Genestreti³, Frederic Allegrini³, Nikolaos Paschalidis¹</u>

(1) NASA Goddard Space Flight Center (2), Johns Hopkins University Applied Physics Laboratory, (3) Southwest Research Institute, (4) University of Michigan, (5) National Center for Atmospheric Research, (6) University of Calgary

CAPE measures charged-particle energy inputs into the upper atmosphere and traces their impacts on global dynamics

Downgoing Electrons supply energy input to the upper atmosphere

Upgoing Secondary Electrons provide remote sounding of the thermosphere below

Energy

Atmospheric 99

Dynamics

Downgoing lons deposit significant energy input in regions where there are no corresponding electron signatures

Upgoing Reflected Electrons contain fluxes that must be measured to accurately quantify net energy input

Instrument Darameter	CAPE Capability			
instrument rarameter	EEA	IEA		
Energy Range	10eV to 30keV	25eV to 40keV		
Energy Resolution	11%	17%		
Azimuthal Resolution	8.18°	8.18°		
Azimuthal FOV	360°	180°		
Elevation FOV	±20°	±20°		
Elevation Resolution	4°	6°		
Temporal Resolution	50ms	50ms		
Geometric Factor (2 π)	10 ⁻³ cm ² sr eV/eV	7x10 ⁻³ cm ² sr eV/eV		

CAPE Investigation Implementation

CAPE is comprised of two top-hat electrostatic analyzers with deflection plates and delay-line anodes for azimuthal position sensing

CAPE Measurements

CAPE Science Goals	Goal 1: Determine how glo and neutral structure and o	obal and regional structur dynamics.	Goal 2: Determine the dominant pathways through which high latitude particle energy forcing leads to (global) ionospheric-thermospheric dynamics.			
CAPE Science Objectives	SO1 : Establish the scale sizes at which high latitude particle energy input enters the ionosphere-ther- mosphere system and determine which are more impactful for ion and neutral dynamics.	SO2 : Reveal how the persistence and evolution of high latitude particle precipitation at different scale sizes modulate its impact on ion and neutral dynamics.	SO3 : Quantify the impact of the energy distribution of precipitating electrons on the ionospheric and thermospheric state.	SO4 : Quantify the impact of ion precipitation induced energy deposition and ionization on the iono- spheric and thermospheric state.	SO5 : Establish how the dynamics of high latitude particle energy input contribute to the generation of propagating structures in the ionosphere and thermosphere away from the auroral zone.	SO6 : Map auroral particle precipitation to neutral molecular composition changes, and their contri- bution to global ion and energy losses.

CAPE provides observations of the particle energy inputs that enable the determination of the spatiotemporal scales and characteristics that are most impactful to lonosphere-Thermosphere dynamics

CAPE observes fluxes of ions above 20 keV that produce significant ionization and heating near dusk in the absence of meaningful electron precipitation, especially during times of high geomagnetic activity

CAPE Science Goals and Objectives

Khazanov and Glocer, 2020

CAPE measures upgoing electrons that encode information about M-I-T coupling, the time history of precipitation structures, and provide critical validation data for models of the neutral atmosphere below GDC

Data Product

Total Energy Flux (mW/m²)

Heating Rate (eV cm⁻³ s⁻¹)

Differential Energy flux

 $(cm^{-2}s^{-1}sr^{-1}eV/eV)$

Average Energy (eV) Ionization Rate (cm⁻³ s⁻¹)

Conductance (S)

CA

8

