

The 2021 Antarctic Total Solar Eclipse: Waves in the Ionosphere-Magnetosphere System

Shane Coyle,

M. Hartinger, C. Clauer, J. Baker, I. Cnossen, M. Freeman, J. Weygand

26 June 2023

Background

- Total Solar Eclipse occurred December 04, 2021
- Ionospheric parameters of eclipses are well studied
 - Chen et al.,2021; Dang et al., 2018
- Previous studies inconclusive WRT magnetic "eclipse effect"
 - Some see decrease in B_{n-s} Momani et al., 2011
 - Others see increase in B_{e-w} Kim et al., 2018
 - Some report both Stening et al., 1971
 - Some find nothing at all Korte et al., 2001
- Antarctic Eclipses are rare
 - 18 year period

Instrumentation and Data

Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP)

- 6+ stations along the 40 degree magnetic meridian
- Magnetically conjugate to stations in Greenland
- Each station has a fluxgate;
 4 lowest MLAT stations also have:
 - Search-coil
 - Dual Frequency GPS

Ionospheric Modeling

- Thermosphere-Ionosphere Electrodynamics General Circulation (TIE-GCM)
- Apparent decrease of ionospheric conductivity by half near totality
- Ray-traced TEC generally agrees until eclipse totality
- Increase in TEC after totality may be explained by thermal upwelling or particle precipitation Cnossen et al., 2019

Ionospheric Modeling

- Thermosphere-Ionosphere Electrodynamics General Circulation (TIE-GCM)
- Apparent decrease of ionospheric conductivity by half near totality
- Ray-traced TEC generally agrees until eclipse totality
- Increase in TEC after totality may be explained by thermal upwelling or particle precipitation Cnossen et al., 2019

RGINIA

- Wave activity is well correlated with local maximum obscuration
- Waves appear in both Northern and Southern hemispheres

- Wave activity is well correlated with local maximum obscuration
- Waves appear in both Northern and Southern hemispheres

- Wave activity is well correlated with local maximum obscuration
- Waves appear in both Northern and Southern hemispheres

- Wave activity is well correlated with local maximum obscuration
- Waves appear in both Northern and Southern hemispheres

- Wave activity is well correlated with local maximum obscuration
- Waves appear in both Northern and Southern hemispheres

- Wave activity is well correlated with local maximum obscuration
- Waves appear in both Northern and Southern hemispheres

Searchcoil Magnetometer

- High frequency (>200 mHz) damping after local peak
 - Similar to prior observations Kim and Chang, 2018
- Simultaneous increase in activity at lower frequencies in GMAG and TEC
- Similar observations at dawn terminator ("sunrise effect") Obana et al., 2015

2021/12/04 - PG3 Searchcoil Magnetometer

Searchcoil Magnetometer

- High frequency (>200 mHz) damping after local peak
 - Similar to prior observations Kim and Chang, 2018
- Simultaneous increase in activity at lower frequencies in GMAG and TEC
- Similar observations at dawn terminator ("sunrise effect") Obana et al., 2015

2021/12/04 - PG3 Searchcoil Magnetometer

Summary

- Magnetometer/GNSS observations of ionospheric waves occur tightly coupled with site-dependent peak solar obscuration
- Waves are observed in both hemispheres, thus communicated through the magnetosphere
- TIE-GCM results support hypothesis that conductivity difference is likely contributor to waves
- This activity appears to be the result of the eclipse, not the coincident substorm

Solar Eclipses and Geomagnetic Substorms

Substorm Distributions Relative to Eclipses

- Of the past 46 eclipses, 43 show some identifyable signature in SuperMAG Electrojet Index
- ~70% have a published substorm occurring within +/- 1 hr of peak totality
 - Automated substorm detection is not perfect

Nearest Substorm (minutes)

Solar Eclipses and Geomagnetic Substorms

PMI Analysis Results

- In any given 2H window, there is nearly a 40% chance of a substorm having occurred
 - Increases to 67% in windows centered around eclipse peaks
- Substorms are **MORE LIKELY** to occur in the same window as eclipses
 - PMI is positive for eclipse/substorm combo
 - PMI is negative for eclipses without substorms
- Window size has slight impact on PMI magnitude
 - Variance of ~15% between 2-6 hours

- X: Substorms, Y: Eclipses
- From 2001-2021 Using a 2-hour rolling window:
 - $p(x_1) \cong 0.3954$
 - $p(y_1) \cong 0.4998 \mathrm{E}^{-3}$
 - $npmi(x_0; y_0) \cong 150.875 \mathrm{E}^{-6}$
 - $npmi(x_1; y_0) \cong -125.154 \mathrm{E}^{-6}$
 - $npmi(x_1; y_1) \cong 0.0251 > 0$
 - $npmi(x_0; y_1) \cong -0.0203 < 0$
 - $I(X;Y) = 12.4785E^{-6}$

Solar Eclipses and Geomagnetic Substorms Summary

- 1. Is it really random chance that both eclipses would have a co-occurrent substorm? **More likely than random chance**
- 2. What is the likelihood of substorm occurrence during eclipses in general? **Nearly 70%**
- 3. Can eclipses provide a seasonally agnostic view of the role of ionospheric conductivity in MI coupling? **Yes!**

- Substorm and eclipses co-occurrence more likely than random chance
- Substorm occurrence likelihood increases by 30% during eclipses
- It is rare that an eclipse occurs without a substorm
- A physical linkage between eclipses and substorms remains unresolved
 - Conductivity likely plays a role
 - Magnetospheric fast-mode waves?
 - Ionospheric convection/outflow?
- More observations and modeling efforts are needed to "close the loop

Questions

Coincident Substorm

- Eclipse onset
- Eclipse peak: 0733UT
- Substorm onset: 0640UT
- Substorm peak: 0720UT
- Substorm |ΔB|: ~300nT (~450kA)

GPS TEC

• TEC comparison across several days shows distinct increase on day of eclipse

The Coincident Substorm: A Pesky Detail

Figure 7. Circuit schematic of the SWMI system as in Boström (1974). During an eclipse, the ionospheric load changes rapidly and acts more like a variable resistance. An example current profile of the series LR circuit representing magnetosphere-ionosphere currents is given for $V_{PC} = 60kV$ (from Weimer), $L_{FAC} = 50H$ and $R_{iono} = 12^{-1}\Omega$. The resistance value is varied linearly from $12^{-1}\Omega$ to $7^{-1}\Omega$ for a time to simulate an eclipse. The area between the curves represents a difference in energy dissipation through the ionosphere because of the reduced conductivity.

- Increased resistance, decreased current - Ohms Law
- Integration of deviated energy for eclipse on order of $2 \cdot 10^{14} J$
- Similar to requisite tail destabilization energy

A Review of Studies of Geomagnetic Storms and Auroral/Magnetospheric Substorms Based on the Electric Current Approach

Syun-Ichi Akasofu*

International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States

Gaussian Kernel Density Estimation

- Estimate of the PDF of a random variable
- Relies on finite sampling, a basis kernel, and a smoothing parameter
- $\widehat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x x_i)$
- In essence:
 - Take histogram $(x_1, x_2, ..., x_n)$
 - Apply weighted Gaussian (*K_h*) to each sample
 - Sum and Normalize $\left(\frac{1}{n}\sum_{i=1}^{n}\right)$

- Result is typically bimodal distribution
 - Distribution centered at eclipse peak
 - Distribution centered at value outside window representing null result

- Compare distributions between eclipse windows and offset
 - This isolates eclipse influence from random sample periods
- Eclipse windows are more closely distributed around epoch center
- Offset windows fail to capture as many substorms as eclipse window
- Multiple offsets have been applied:
 - +/- [0-7, 27, 180, 365] days

KDE comparison with interval offset of -01 days

6 5 4 3 2 — 1 — 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Number of Eclipses by Month (2001-2021)

PMI Results

- *x* = *PCIndex*, *y* = *substorms*
 - $p(x_1) \cong 0.2358$
 - $p(y_1) \cong 0.3954$
 - $p(x_1)p(y_1) \cong 93.2353e^{-3}$
 - $p(x_1, y_1) \cong 93.2545e^{-6}$
 - $npmi(x_0; y_0) \cong 0.1595$
 - $npmi(x_1; y_0) \cong -0.1869$
 - $npmi(x_0; y_1) \cong -0.2838$
 - $npmi(x_1; y_1) \cong 0.2109$
 - $I(X;Y) \cong 0.0605$

- $x = B_z N Turn, y = eclipses$
 - $p(x_1) \cong 0.9832$
 - $p(y_1) \cong 0.4998e^{-3}$
 - $p(x_1)p(y_1) \cong 491.40336e^{-6}$
 - $p(x_1, y_1) \cong 0.4914e^{-3}$
 - $npmi(x_0; y_0) \cong -1.4947e^{-5}$
 - $npmi(x_1; y_0) \cong 0.0099$
 - $npmi(x_0; y_1) \cong 5.9847e^{-5}$
 - $npmi(x_1; y_1) \cong -274.1473 e^{-3}$
 - $I(X;Y) \cong 88.4764e^{-9}$

CPMI Results

- Determine sensitivity to other variables:
 - p(z) = times when PC index > 5.5
- Again, information gained is small relative to original score
 - $\frac{-731.7228e^{-9}}{13.2102e^{-6}} \cong 5.5\%$
- Trend remains the same:
 - More likely than random chance that substorms and eclipses will co-occur
 - Less likely than random chance that eclipses occur without a substorm within the same 2H window.

- $p(x_1) \cong 0.3954$
- $p(y_1) \cong 0.4998e^{-3}$
- $p(z_1) \cong 0.0310$
- $p(x_0, y_0, z_0) \cong 0.5950$
- $p(x_1, y_1, z_1) \cong 12.1324e^{-6}$
- $pmi(x_0, y_0, z_1) \cong 332.3225e^{-6}$
- $pmi(x_1, y_0, z_1) \cong -144.5541e^{-6}$
- $pmi(x_0, y_1, z_1) \cong -0.9967$
- $pmi(x_1, y_1, z_1) \cong 0.2833$
- $npmi(x_0, y_1, z_1) \cong -0.0530 < 0$
- $npmi(x_1, y_1, z_1) \cong 0.0173 > 0$
- $I(X;Y|Z) \cong 13.2102e^{-6}$
- $I(X;Y) I(X;Y|Z) \cong -731.7228e^{-9}$

Pointwise Mutual Information

•
$$pmi(x; y) \equiv log \frac{p(x, y)}{p(x)p(y)}$$

- Quantified discrepancy between probability of coincidence
- Joint distribution over individual distributions
- EX: probability a substorm occurs in a given window
 - $p(x) = \frac{number \ of \ windows \ with \ a \ substorm}{total \ number \ of \ windows}$
- PMI can be normalized between [-1, 1]
 - $npmi(x_1; y_1) \cong \frac{pmi(x_1; y_1)}{-\log p(x_1, y_1)}$
 - -1: never occurring together
 - 0: independent variables
 - 1: complete co-occurrence

Information Entropy

By example

- $H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$
- Information Entropy is the quantified uncertainty of an outcome
- For a fair coin, H(X) = 1
- For an unfair coin, H(X) < 1
- "Death and taxes have an information entropy of 0."

Mutual Information (MI)

An Example

- Think of something grey, with 4 legs
- You're likely thinking of a table, right?
 - Maybe if you're a generative AI
- More likely, you thought of an elephant
- We can condition the MI by the "has a long nose" variable
- MI is a measure of the overlapping area between variables

Mutual Information (MI)

Non-Linear Correlation

- **Correlation** typically refers to linear correlation between *x*, *y*
- Uncorrelated variables *x*, *y* may have identifiable dependence
 - $x^2 + y^2 = 4$
 - $y = \sin x$
- PMI quantifies regional dependence in function space
- Does not inform about type of relationship, only strength

