An electromagnetic calculation of electric field mapping that finds very unexpected results

Russell B. Cosgrove (SRI International)

Dynamical evolution toward electrostatic equilibrium (or not) happens through waves.

Electrical Engineering Basics, Transmission Lines

Electromagnetic 5-Moment Fluid Equations, Matrix Form:

Polarization Vectors

Stack Slabs and Use Two Wave Modes

- **16 equations** gives 8 potential waves.
- The X-mode, Omode and Z-mode waves are too high in frequency.
- There is also a non-propagating pair.
- That leaves 4 waves.
- **Only the Whistler** and Alfven can travel more than 10 km.
- Whistler is cutoff ٠ in F region.

Transmission Line Network Model

Match across the boundaries. Bootstrap from

Approximations:

- Keep only the Alfven and Whistler terms.
- Usual interpretation of a propagating wave packet.
- Model ionosphere as stack of thin homogeneous slabs.

Validation and Three Types of Wavelike Effects

With the Real Waves get Unexpected, New Physical Predictions!

Analyzing the Field Line from Tonga to ICON

Conclusions

- The model would predict electrostatic theory if the waves had the "right" properties.
- But the real, collisional ionospheric waves do not have these properties.
- The results are of a fundamental nature and affect many things.
- e.g.: (1) a resonance is possible between the *E* and *F* regions; (2) E field cutoff, greatly reducing Σ.
- This is a very standard physics calculation. It is just something that has been neglected.