

Propagation of small-scale gravity waves of lower atmospheric origin into the thermosphere during sudden stratospheric warmings

Erdal Yiğit¹, Alexander S. Medvedev²

¹University of California at Berkeley, Space Sciences Laboratory, Berkeley, CA, USA email: erdal@ssl.berkeley.edu

²*Max Planck Institute for Solar System Research*, K.-Lindau, Germany

CEDAR, Boulder, USA, June 2013

Sudden Stratospheric Warming

Figure 1: Left: NCEP \overline{T} and $\overline{u} \sim 30$ km in Jan 2008 (Goncharenko and Zhang, 2008, Figure 1). Right: T_i residual oscillations during Jan 2010 SSW (Goncharenko et al., 2013, Figure 10).

- Ionospheric effects (Goncharenko and Zhang, 2008; Goncharenko et al., 2010; Pancheva and Mukhtarov, 2011)
- Primary cause: PW amplification & breaking
- Wave signatures in the upper atmosphere during SSW (Goncharenko et al., 2013)

Gravity Waves

- Small-scale internal waves generated in the lower atmosphere.
- Unresolved & thus parameterized in GCMs.
- GW signatures observed in the thermosphere (Djuth et al., 2004)
- \bullet Propagation into the thermosphere (> 105 km) and resulting ...
 - dynamical effects (Yiğit et al., 2009; Vadas and Liu, 2009; Yiğit et al., 2012)
 - solar cycle variations (Fritts and Vadas, 2008; Yiğit and Medvedev, 2010)
 - heating/cooling (Yiğit and Medvedev, 2009)
- Significant variations of GW-induced effects in the thermosphere are expected during transient events occurring in the lower atmosphere.

The Extended Spectral Nonlinear Gravity Wave Parameterization

- Subgrid-scale GWs in GCMs (Yiğit et al., 2008)
- Neither intermittancy factors nor fudge factors are used!
- Input : Initial gravity wave activity at a given source level
- Output: GW induced dynamical and thermal effects
- Further developments of the work by Medvedev and Klaassen (1995)
- Accounts for the dissipation of GWs of lower atmospheric origin in the thermosphere: Nonlinear diffusion β_{non} , ion drag β_{ion} , radiative damping β_{new} , molecular viscosity and thermal conduction β_{mol} , eddy viscosity β_{eddy} .
- Applications:

Earth: (Yiğit et al., 2009; Yiğit and Medvedev, 2009, 2010; Yiğit et al., 2012; Yiğit and Medvedev, 2012)

Mars: (Medvedev et al., 2011a,b; Medvedev and Yiğit, 2012)

Venus: (Nakagawa et al., 2013)

The Extended GW Parameterization

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D19106, doi:10.1029/2008JD010135, 2008

Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study

Erdal Yiğit,¹ Alan D. Aylward,¹ and Alexander S. Medvedev²

Received 16 March 2008; revised 8 July 2008; accepted 22 July 2008; published 8 October 2008.

[1] A parameterization of gravity wave (GW) drag, suitable for implementation into general circulation models (GCMs) extending into the thermosphere is presented.

Back Close

6/13

Figure 2: Zonal mean a) RMS; b) zonal GW drag (Yiğit and Medvedev, 2012, Figure 2).

Figure 3: GW activity variability at 250 km. [Yiğit et al., 2013, GRL, submitted]

Figure 4: GW drag variability at 250 km. [Yiğit et al., 2013, GRL, submitted]

Effects on Thermospheric Variability

Figure 5: Zonal wind variability change at 250 km in the SH [Yiğit et al., 2013, GRL, submitted].

Summary and Conclusion

Significant variations of GW activity/effects during SSW

During SSWs,

- GW penetration into the thermosphere above the turbopause
- Mean GW activity/effects in the thermosphere increase
- GW temporal variability increase
- GWs produce effects in the Southern (summer) Hemisphere in the thermosphere
- GWs influence thermospheric wind variability dramatically

SSW-induced GW variations are an appreaciable source of thermospheric variability

COSPAR: C2.2 Wave-coupling Session

2–10 August 2014

Abstract submission starts: 19 August 2013

Wave Coupling Processes in the Whole Atmosphere

lain Scientific Organizer (MSO) and Deputy Organizer (DO)		
Main Scientific Organizer:	Erdal Yiğit	
	University of California, Berkeley	
	Space Sciences Laboratory	
	7 Gauss Way	
	94720 Berkeley, CA	
	United States	
	Tel: +1 734 763 6248	
	E-Mail: erdal@ssl.berkeley.edu	
Deputy Organizer:	Jens Oberheide	
	Clemson University	
	102B Kinard Laboratory	
	29634-09 Clemson, SC	
	United States	
	Tel: +1-864-656-5163	

Description

This symposium focuses on troposphere to ionosphere multi-scale wave coupling. New measurements, modeling and theoretical results, and analysis techniques are encouraged, including electrodynamical and chemical studies. In particular, studies in the following areas are most welcome:

- 1. Global structure, variability, and sources of gravity waves, planetary waves, and tides.
- 2. Secondary wave generation, propagation, and their effects on the neutral and ionized atmosphere.

Fax: +1-864-656-0805 E-Mail: joberhe@clemson.edu

- 3. Neutral atmosphere-ionosphere coupling processes.
- 4. Ionosphere-thermosphere-mesosphere response to lower and middle atmosphere variability.

- Djuth, F. T., M. P. Sulzer, S. A. Gonzales, J. D. Mathews, J. H. Elder, and R. L. Walterscheid (2004), A continuum of gravity waves in the arecibo thermosphere?, *JGR*, 31, L16801, doi:10.1029/2003GL019376.
- Fritts, D. C., and S. L. Vadas (2008), Gravity wave penetration into the thermosphere: sensitivity to solar variations and mean winds, AG, 26, 3841–3861.
- Goncharenko, L., and S.-R. Zhang (2008), Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude, *GRL*, 35, L21103, doi:10.1029/2008GL035684.
- Goncharenko, L. P., A. J. Coster, J. L. Chau, and C. E. Valladares (2010), Impact of sudden stratospheric warmings on equatorial ionization anomaly, *JGR*, 115, A00G07, doi:10.1029/2010JA015400.
- Goncharenko, L. P., V. W. Hsu, C. G. M. Brum, S.-R. Zhang, and J. T. Fentzke (2013), Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of january 2010, JGR, 118, doi:doi:10.1029/2012JA018251.
- Medvedev, A. S., and G. P. Klaassen (1995), Vertical evolution of gravity wave spectra and the parameterization of associated wave drag, JGR, 100, 25.841–25.853.
- Medvedev, A. S., and E. Yíğit (2012), Thermal effects of internal gravity waves in the Martian upper atmosphere, *GRL*, 39, L05201, doi:10.1029/2012GL050852.
- Medvedev, A. S., E. Yiğit, and P. Hartogh (2011a), Estimates of gravity wave drag on Mars: indication of a possible lower thermosphere wind reversal, *I*, 211, 909–912, doi:10.1016/j.icarus.2010.10.013.
- Medvedev, A. S., E. Yiğit, P. Hartogh, and E. Becker (2011b), Influence of gravity waves on the Martian atmosphere: General circulation modeling, *JGR*, 116, E10004, doi:10.1029/2011JE003848.
- Pancheva, D., and P. Mukhtarov (2011), Stratospheric warmings: The atmosphere-ionosphere coupling paradigm, JASTP, 73.
- Vadas, S., and H. Liu (2009), Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves, *JGR*, *114*, A10310, doi:10.1029/2009JA014108.
- Yiğit, É., and A. S. Medvedev (2009), Heating and cooling of the thermosphere by internal gravity waves, GRL, 36, L14807, doi:10.1029/2009GL038507.
- Yiğit, E., and A. S. Medvedev (2010), Internal gravity waves in the thermosphere during low and high solar activity: Simulation study., JGR, 115, A00G02, doi:10.1029/2009JA015106.
- Yiğit, E., and A. S. Medvedev (2012), Gravity waves in the thermosphere during a sudden stratospheric warming, *GRL*, 39, L21101, doi:10.1029/2012GL053812.
- Yiğit, E., A. D. Aylward, and A. S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, *JGR*, *113*, D19106, doi:10.1029/2008JD010135.
- Yiğit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris (2009), Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause, JGR, 114, D07101, doi:10.1029/2008JD011132.
- Yiğit, E., A. S. Medvedev, A. D. Aylward, A. J. Ridley, M. J. Harris, M. B. Moldwin, and P. Hartogh (2012), Dynamical effects of internal gravity waves in the equinoctial thermosphere, JASTP, 90–91, 104–116, doi:10.1016/j.jastp. 2011.11.014.

Contact: **Erdal Yiğit** erdal@ssl.berkeley.edu Space Sciences Laboratory, UC Berkeley

13/13