

Low Frequency Wave Measurements Onboard C/NOFS During the 2008-2009 Solar Minimum - implications for lightning studies -

F. Simões¹, R. Pfaff¹, K. Bromund¹, H. Freudenreich¹, J. Klenzing¹, M.C. Liebrecht¹, S. Martin¹, D. Rowland¹, P. Uribe¹, T. Yokoyama¹, S. Ivanov², D. Bilitza^{3,4}

¹NASA/GSFC, Heliophysics Science Division, Space Weather Laboratory, Greenbelt, Maryland
 ²Georgia Institute of Technology, Atlanta, Georgia
 ³NASA/GSFC, Heliophysics Science Division, Heliospheric Physics Laboratory, Greenbelt, Maryland
 ⁴George Mason University, Space Weather Laboratory, Fairfax, Virginia

fernando.a.simoes@nasa.gov

Outline

• C/NOFS (Communications/Navigation Outage Forecasting System) satellite

• VEFI measurements: sensitivity and operating modes

• Extremely Low Frequency (ELF) electric field measurements

- Schumann Resonance (SR)
- Ionospheric Alfvén Resonator (IAR)

SR and IAR modeling - consequences for tropospheric-ionospheric coupling mechanisms

Relevance for lightning studies

• Correlation between Communications/Navigation Outage Forecasting System (C/NOFS) satellite and ground based measurements

Summary

Vector Electric Field Instrument (VEFI)

VEFI – includes 3 electric field dual probes to perform low frequency measurements

Boom size: 10 m Dipole effective length: ~ 20 m Sampling: 512 s⁻¹ Sensitivity: ~10 nVm⁻¹Hz^{-1/2} (ELF range) E12 is 'parallel' to B E34, E56 are 'perpendicular' to B

Altitude: 400-850 km Inclination: 13° Orbit period: ~97 min

Concerning VEFI ELF measurements, only E34 and E56 waveforms are available in a regular basis

VEFI also includes two optical lightning detectors

Schumann Resonance Measurements

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

Schumann Resonance – a Global Picture

05/15

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

Schumann Resonance – a Global Picture

• Models predicted that Schumann resonances should not be detected from space (the upper boundary of the cavity would be a perfect reflector at about ~100 km altitude);

• VEFI detected up to 10 peaks; the frequencies are corroborated by ground measurements;

• Leakage mechanism is still uncertain (waves are possibly propagating in the ordinary or extraordinary mode, i.e., wave vector perpendicular to the geomagnetic field);

- Peaks are visible during nighttime and preferentially at low altitude;
- Q-factor is ~5 in line with values reported on the ground;

• This result has major implications for planetary science studies (Schumann resonances may be used to constrain the parameterization of the solar system);

• The Schumann resonance amplitude seems correlated to lightning activity, corroborating ground measurements known as 'Q-burst enhancements' (strong thunderstorm activity);

• Ground based measurements of Schumann resonance transients have been connected to sprites (boccippio et al., 1995).

Lightning activity can be inferred from orbit with optical sensors and also <u>ELF electric field measurements</u>

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

Typical low latitude profiles

C/NOFS ELF 'Fingerprint' - Facts

- Frequency range: 0.1-30 Hz
- Up to 20 peaks are seen
- Q-factor is ~15
- ∆*f* ~ 0.5-2.5 Hz

Signature of the Ionospheric Alfvén Resonator

- Amplitude is stronger in the zonal/horizontal component
- Signature seen during nighttime and close to the terminator
- Δf gradient is usually steeper close to the terminator
- Seen preferentially at low altitude
- Seen off the magnetic equator only
- Often seen in consecutive orbits
- Seen in different seasons

Implications for lightning studies:

A narrow event in orbit 667 matches the background Δf and shows Q~30; amplitude sudden variation occurs at ~15 Hz

Frequency

- 🗹 Q-factor
- Electric field
- Diurnal variation

IAR Characterization: Ongoing work

- Coupling (shear Alfvén + magnetosonic)
- Losses (Pedersen, Hall, transverse heterogeneity)
- Effect of altitude (position in the resonator)
- Effect of magnetic latitude (off the magnetic equator)

? Latitude

- **?** Electromagnetic source (lightning vs. Geomagnetic pulsations)
- ? Effect of hiss
- ? Effect of terminator
- ? Real ionosphere + IRI modeling

Wave vector

13/15

- Magnetic field
- Seasonal variation

Summary

C Lightning is possibly a major source to IAR excitation; if so, IAR signatures would provide additional means to investigate the impact of individual lightning strokes in the ionosphere;

C/NOFS ELF measurements contribute to investigate lightning activity from space;

Correlation between optical and ELF electric field is possible, contributing to lightning activity assessments at local and global scales;

✓ SR measurements of cavity leakage contribute to assessing global characteristics of lightning-thunderstorm distribution;

References (SR:IAR)

SR:

Prediction

Schumann (1952), On the free oscillations of a conducting sphere which is surrounded by an air layer and an ionosphere shell, *Z. Naturforsch.* **A7**, 149–154 (in German)

First Observation on the ground

Balser and Wagner (1960), Observations of Earth-ionosphere cavity resonances, Nature 188, 638–641

First Observation from space

Simões et al., submitted

Modeling

Sentman (1990), J. Atmos. Terrest. Phys. **52**, 35-46 Simões et al. (2007), Planet. Space Sci. **55**, 1978–1989, doi:10.1016/j.pss.2007.04.016 Simões et al. (2009), Geophys. Res. Lett. **36**, L14816, doi:10.1029/2009GL039286

Link to TLE's

Boccippio et al. (1995), Sprites, ELF transients, and positive ground strokes, Science 269, 1088-1091

IAR:

Prediction

Polyakov (1976), On properties of an ionospheric Alfvén resonator, in symposium KAPG on Solar-Terrestrial physics, 72-73

First observation on the ground

Belyaev et al. (1990), The ionospheric Alfvén resonator, J. Atmos. Terrest. Phys. 52, 781-788

First observation from space

In preparation

Modeling

Lysak (1999), J. Geophy. Res. 104, 10017-10030

Link to lightning

TLE's - Sukhorukov and Stubbe (1997), *Geophys. Res. Lett.* **24**, 829-832 (1997) Lightning - Surkov et al. (2006), *J. Geophys. Res.-Space* **111**, A01303, doi:10.1029/2005JA011320 Geomagnetic pulsations - Demekhov et al. (2000), *Geophys. Res. Lett.* **27**, 3805-3808

Acknowledgements

We thank all C/NOFS partners for such a fruitful collaboration and for providing outstanding data. Two of us (FS and JK) acknowledge the NASA Postdoctoral Program that is administered by the Oak Ridge Associated Universities.

Auxiliary Material

$\left(\frac{\partial}{\partial t} + \frac{\sigma_P}{\varepsilon}\right)Q = -V^2 \frac{\partial J}{\partial z} \mp \frac{\sigma_H}{\varepsilon}M$		$\left(\frac{\partial}{\partial t} + \frac{\sigma_P}{\varepsilon}\right) M = -V^2 \nabla^2 B_z \pm \frac{\sigma_H}{\varepsilon} Q$
$\frac{\partial}{\partial t}(1-\lambda^2\nabla_{\perp}^2)J = -\frac{\partial Q}{\partial z} + \eta_{\parallel}\nabla_{\perp}^2J$		$\frac{\partial B_z}{\partial t} = -M$
$\sigma_P = \sum_s \frac{N_s q_s^2}{m_s} \frac{\nu_s}{\nu_s^2 + \Omega_s^2}$		$\sigma_{H} = -\sum_{s} \frac{N_{s}q_{s}^{2}}{m_{s}} \frac{\Omega_{s}}{\nu_{s}^{2} + \Omega_{s}^{2}}$
$V = \frac{c}{\sqrt{\varepsilon/\varepsilon_o}}$		$V_A = \frac{B_{oz}}{\sqrt{\mu_o \rho}}$
$\varepsilon \equiv \varepsilon_o \left(1 + \sum_s \frac{\omega_{ps}^2}{\nu_s^2 + \Omega_s^2} \right) = \varepsilon_o \left(1 + \frac{c^2}{V_A^2} \sum_s \frac{m_s/M_{ave}}{1 + \nu_s^2/\Omega_s^2} \right)$		
$Q = \nabla_{\perp} \cdot E_{\perp}$		$M = (\nabla_{\perp} \times E_{\perp}) \cdot \hat{z}$
$J = (\nabla_{\perp} \times B_{\perp}) \cdot \hat{z}$		$B_o = \overline{+}B_{oz}\hat{z}$
$\lambda = \frac{c}{\omega_{pe}}$	$\sigma_{\parallel} = \frac{N_e q_e^2}{m_e v_e}$	$\eta_{\parallel} = \nu_e \lambda^2 = \frac{1}{\mu_o \sigma_{\parallel}}$

Lysak (1999)

$$\frac{\partial^2 Q}{\partial z^2} + \frac{\omega^2}{V^2} Q = 0$$
$$\frac{\partial^2 M}{\partial z^2} + \frac{\omega^2}{V^2} M = 0$$

$$\frac{\partial^2 Q}{\partial z^2} + \frac{\omega^2}{V^2} Q = 0$$
$$\frac{\partial^2 M}{\partial z^2} + \frac{\omega^2}{V^2} M = 0$$

$$\frac{\partial^2 Q}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) Q = 0$$
$$\frac{\partial^2 M}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) M = 0$$

$$\frac{\partial^2 Q}{\partial z^2} + \frac{\omega^2}{V^2} Q = 0$$
$$\frac{\partial^2 M}{\partial z^2} + \frac{\omega^2}{V^2} M = 0$$

$$\frac{\partial^2 Q}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) Q = 0$$
$$\frac{\partial^2 M}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) M = 0$$

$$\frac{\partial^2 Q}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) Q = \mp \frac{i\omega}{V^2} \frac{\sigma_H}{\varepsilon} M$$

 $\frac{\partial^2 M}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) M = \pm \frac{i\omega}{V^2} \frac{\sigma_H}{\varepsilon} Q$

$$\frac{\partial^2 Q}{\partial z^2} - \frac{\left(1 - i\frac{\omega}{\nu}\right)\left(\alpha' - \frac{\alpha\sigma'_{\parallel}}{\sigma_{\parallel}}\right) + i\frac{\omega\alpha\nu'}{\nu^2}}{\mu_o\sigma_{\parallel}\beta} \frac{\partial Q}{\partial z} + \frac{\beta}{V^2}\left(-i\omega + \frac{\sigma_P}{\varepsilon}\right)Q = \mp \frac{\beta}{V^2}\frac{\sigma_H}{\varepsilon}M$$

$$\frac{\partial^2 M}{\partial z^2} + \frac{i\omega}{V^2} \left(-i\omega + \frac{\sigma_P}{\varepsilon} \right) M = \pm \frac{i\omega}{V^2} \frac{\sigma_H}{\varepsilon} Q$$

$$\beta = i\omega + \frac{\alpha}{\mu_o \sigma_{\parallel}} \left(1 - i\frac{\omega}{\nu}\right)$$

C.

UL

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

C.

Typical low latitude profiles

Alfvén Velocity Profile: $(V_A^2(z) = V_A^{2min} / (\varepsilon^2 + e^{-z/H}))$

Resonator Eigenfrequencies:

 $f_n = V_A(n + 1/4)/2(L + H) \Delta f = V_A/2(L + H)$

Quality Factor:

 $Q_n = (1 + L/H)/\pi\varepsilon$

Upper Boundary Transparency Condition: $\pi \epsilon \omega H / V_A < 1$

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

CEDAR-GEM, June 26 - July 1, Santa Fe, NM

Ground- and Space-Based Observations

First ground observation (mid latitude – Gorky, Ukraine) Belyaev et al. (1990)

Ground- and Space-Based Observations

Ground- and Space-Based Observations

Summary

C/NOFS unexpectedly detected Schumann resonance (SR) from space (up to 10 peaks are observed and confirmed by ground measurements)
 Previous models predicted that SR should remain confined to the Earth-ionosphere cavity (cavity leakage mechanism remains uncertain)
 Space-based SR measurements offer a new remote sensing technique for planetary science applications

 [•] C/NOFS detected signatures of the Ionospheric Alfvén Resonator (IAR) - up to

 20 lines are observed

IAR shows peculiar variations with altitude, magnetic latitude, and local time
 IAR can be used for ionospheric monitoring, namely for checking the IRI model accuracy

1 Investigating seasonal variations of IAR and SR is the next logical step

⁽¹⁾ Simultaneous measurements of V12, V34, V56 at 512 S/s during a few days are recommended to constrain both the cavity leakage mechanism (SR) and propagation in the resonator (IAR)

Yes, we can estimate TEC and put constraints on the ion density profile