
Sensor Network Examples

 
Despite the importance of this region of the atmosphere in our technology-based society, we still lack a 
basic understanding of the climatology and dynamics of many of the parameters, most importantly neutral 
winds, critical to being able to predict the state of the ionosphere/thermosphere/mesosphere (ITM) 
system.  The most robust climatological neutral wind model, the recently revised Horizontal Wind Model 
(HWM07; Drob et al., 2008), while improving over the previous HWM93 (Hedin, 1996), still lacks a 
large enough dataset in the thermosphere to accurately model the thermospheric wind pattern at low- and 
mid-latitudes.   For understanding the space weather effects of mid-latitude irregularities, one needs to 
have spatial coverage of electron density, as well as knowledge of parameters that can cause irregularity 
development, most notably neutral winds, electric fields, and temperatures during periods, by definition, 
not indicative of what is provided by climatological models. 
 
The lack of measurements of wind, temperature, and other parameters with sufficient spatial coverage has 
hampered progress in improving our understanding of the ITM. Over the past 35 years, several satellite 
missions have provided wind measurements (e.g., AE, DE, UARS, TIMED). However, satellite 
measurements alone cannot resolve the spatial-temporal scales of many interesting phenomena and ITM-
focused satellite programs are, unfortunately, few and far between. As a result, the characterization of the 
thermospheric state is greatly enhanced through the use of ground-based remote sensing devices.  
 
In past years, ground-based Fabry-Perot interferometer (FPI) observatories have been deployed at single 
sites, providing highly localized measurements of neutral temperature and winds. Similarly, imaging 
systems and GPS equipment have been deployed at isolated stations. These single-site deployments have 
garnered a wealth of information on the myriad of phenomena occurring in the ITM at mid-latitudes as 
well as data on ITM variability. However, these observations also make it clear that the scale of these 
phenomena is larger than what can be studied from a single location. Meriwether [2006] described the 
space weather community’s need for thermospheric wind measurements on a denser scale and advocated 
for a FPI network that would help satisfy this need. Indeed, the National Academy DASI report 
highlighted this point as a primary justification for networks of small geophysical sensors [Foster et al., 
2006].  Unfortunately, there are few concrete examples of the DASI concept being implemented, due to 
difficulties in funding the development, deployment and operation of such ambitious networks. 
 
However, the few examples of sufficiently dense networks of an individual type of instrument making 
coordinated measurements shows the strength of the DASI concept. SuperDARN has utilized many radars 
to measure the ionospheric flow over an extremely large area, providing maps of ionospheric convection 
at high latitudes. The GPS network in the US, Japan, and over the whole globe has provided valuable 
information on how the ionosphere behaves during storms and, in some sense, has become one of the 
most important data sources for studying spatial-temporal dynamics of the global ionospheric system. 
Most recently, the THEMIS array of ground-based 
magnetometers and white-light all-sky imagers (which cover 
Canada) have changed the way auroral substorm research is 
being conducted through its coordinated observations. 
 
Here we advocate for the creation of a North American 
Thermosphere Ionosphere Observation Network  (NATION) 
of ground-based remote sensing devices that would cover the 
North American continent, with a potential deployment as 
depicted in Figure 1, and provide the ability for real-time 
specification of spatial-temporal variability of important ITM 
parameters, including neutral winds, temperatures, currents, 
and irregularities.  The specific instrumentation types that we 
advocate provide a relatively complete set of measurements 

!
Figure 1:  Potential locations of initial 
nodes in an ITM-focused DASI network. 

Examples of ground-based networks
Intermagnet LISN ISRs of the world

Proposed mid-latitude DASI Ocean floats: 3600!

Incoherent Scatter Radars

NOAA GNSS Receiver (CORS)

Space based sensor networks

Crowdsourcing and Citizen Science
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Filling the Gap: Technology Trends 

[1 GFLOP = 109 floating point ops] 

Top500 Supercomputers, 1993 
CM-5 Los Alamos 
• 1024 processors 
• 59.7 GFLOPS 
 

http://www.top500.org/timeline/ 

2013 

iPhone 5S (A7 64 Bit) 
76.8 GFLOPS (GPU@300MHz) 

iPad3 
38.4 GFLOPS (GPU@300MHz) 

[Source: AnandTech.com] 
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Computational 
Reconstruction Cloud 

Mahali: Space Weather Monitoring Everywhere 
MIT: Victor Pankratius, Phil Erickson, Anthea Coster, Frank Lind 
BU:  Joshua Semeter, Sebastijan Mrak, Michael Hirsch, John Swoboda, Greg Starr 



Mahali Deployment

Features: 

1.Relocatable / scalable 

2.Autonomous 

3.Data relayed to cloud 

4.Data products produced in the cloud
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Logical extension
• Billions of GNSS measurements provided by crowd sourced network 

• Many intersecting lines of site, possibility of 3D tomographic 
reconstructions of the ionosphere at unprecedented resolution. 

• A “modest” scenario:    
- 1 million provides, each seeing 10 satellites = 10 million TEC samples / second 

- Discretize the ionosphere:  1o Lat x 1o Lon + 50 altitudes = 3 million pixels 

- 30 trillion element, time-varying, projection matrix !    

• Direct pixel-based reconstruction (very) far from feasible!  

• Based on current theory, how many feasible solutions are there?    

• Can a human-machine collaboration discover the right answer?
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Data – all the time – everywhere on earth and in space

• Scalable machine assistance is 

needed to help humans in the 

discovery process

• Overcome human cognitive limits 

through algorithmic support

• The scientific discovery process 

becomes a search process across 

multidimensional data sets. 

Scientific question answering by 

matching theory variants to 

empirical data sets.

Software-based 

Instruments / Backends

• Algorithms

• Parallel Computing

• Search, Classification

• Signal Processing

• Imaging

• Simulations

• Software Engineering

• Data Mining



Computer Aided Discovery
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Computer-Aided Discovery

Signals

Data Exploration, Analysis, Mining

Data

Discovery and Insight Generation

“Syntax”

“Semantics”

“Pragmatics”

Semiotic Layers

Numbers correctly encode 

actual measurements

“This is feature X”

• What does feature X imply? 

• How does it fit into the theoretical context? 

• Does it contradict or confirm established models?

Real-World Phenomena

ACI, PI Pankratius

1442997

Challenge



Model Representations
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Computer-Aided Discovery: Conceptual Approach
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TEC Imaging Workflow
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Application Examples
Ionosphere & Space Weather

Variants of ionospheric feature models
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Spatial 
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Geospace TEC – Imaging Workflow
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[V.Pankratius et al., IEEE Intelligent Systems, 2016]
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Computer-Aided Discovery: Overview

S o u rc e : flic k r/ I B M
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Search results – would you like 
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Gather scientist’s feedback
Model 1 Model 2 Model 3 Model 4

“physics”

Artificial 
Intelligence
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