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Theory of Lightning Initiation from Hydrometeors

Ø One theory of air breakdown that has been applied to explaining the initiation of lightning 
discharges is the conventional breakdown theory [e.g., MacGorman and Rust, 1998; Rakov and 
Uman, 2003]. 

Ø A critical component of this theory is to demonstrate that streamers are able to originate in 
thundercloud electric fields. 

Ø The observed maximum value of this field varies from 0.13 - 0.3Ek [Stolzenburg et al., 2007], 
where Ek is the conventional breakdown threshold field. 

Ø The initiation of streamers from hydrometeors with an applied electric field less than the 
breakdown threshold field has been observed in laboratory experiments [e.g., Dawson,1969; 
Griffiths and Latham, 1974; Griffiths and Phelps, 1976, Peterson et al., 2006].
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Streamer Model Formulation
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The most favorable configurations for streamers to 
originate from hydrometeors in  thunderclouds are: 
1) glancing collisions of two water drops [Crabb and 

Latham, 1974] 
2) individual ice crystals [Griffiths and Latham, 1974]. 

This simulation domain can be used to model both of 
these cases.

Liu and Pasko [2004]



Streamer Simulation from Model Hydrometeor Results

Cross-sectional views of distributions of electron density and electric field of a streamer at 7km. 
E0 = 0.5Ek, l = 11.07 mm, a = 0.22 mm, peak density = 1.23x1020 m-3.
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Streamer Simulation from Model Hydrometeor Results

Cross-sectional views of distributions of electron density and electric field of a streamer at 7km. 
E0 = 0.3Ek, l = 11.07 mm, a = 0.22 mm, peak density = 1.23x1020 m-3.
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Dimension of the Model Hydrometeor
t = 21.0 ns
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The streamer initiation is sensitive to the dimension of the initial 
ionization column. To estimate the requirements for streamer 
initiation from the model hydrometeor, we treat the initial 
ionization column as a perfect conductor [Liu et al., PRL, 
submitted]. 

[Bazelyan and Raizer, Spark Discharge, 1998] 

For the streamer to be able to form, the maximum field at the 
tip of the cylinder should be around the streamer head field 3-
5Ek, if a has a value of typical streamer radii. Then l can be 
calculated as:



Formation of Branching Structures

• Effects of density

• Formation of branching structure: 
E0 = 0.3Ek, altitude = 7 km, 
l = 11.07 mm, a = 0.27 mm, 
peak density = 0.41x1020 m-3.

• Streamer formation: 
E0 = 0.3Ek, altitude = 7 km, 
l = 11.07 mm, a = 0.27 mm, 
peak density = 1.23x1020 m-3.

t = 24.3 ns
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Formation of Branching Structures

• Effects of radius

• Formation of branching structure: 
E0 = 0.3Ek, altitude = 7 km, 
l = 11.07 mm, a = 0.22 mm, 
peak density =1.23x1020 m-3.

• Streamer formation: 
E0 = 0.3Ek, altitude = 7 km, 
l = 11.07 mm, a = 0.27 mm, 
peak density = 1.23x1020 m-3.

t = 18.0 ns
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Streamer Simulation from Other Geometries
t = 0 ns
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E0 = 0.3Ek, 7 km, peak plasma density is 1.84x1020 m-3, major and minor diameters: 
9.96 mm and 3.32mm.



Summary and Conclusions
Results from this study are summarized as below:

1. It has been demonstrated in this study that streamers can be initiated from hydrometeors in 
fields lower than the air breakdown field. We observed streamer formation for fields as low as 
0.3Ek. Future work will be conducted to investigate the possibility of streamer initiation in even 
lower field values.

2. Dimensions, i.e., length and radius of the initial ionization column, have a critical effect on the 
initiation of streamers in fields lower than the air breakdown field. If the dimension of the 
column does not follow the required value, the streamer may not form. We have estimated 
the length and size requirement for column hydrometeors in this study.  

3. Our modeling results show that higher initial peak plasma density reduce the effects of 
branching. Also, the results show that a characteristic spatial scale contributes to stable 
streamer initiation.

4. Preliminary results show that changing the geometry of the ionization column to an ellipsoid 
prevent or delay the formation of branching structures.
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