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Observations of Upward Discharges
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Streamer-to-Leader Transition in Jets
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Figure: (a) A black and white image of a 2-min time ex-
posure of a blue jet [Wescott et al., 2001]. (b) Processed
image obtained by averaging of sequence of video fields
from observations reported in Pasko et al. [2002].

▷ Streamer structure of jets was
first suggested by Petrov and Petrova
[1999]

[Pasko et al., 2002]
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Mechanisms of Conductivity Increase [Naidis, 1999]

Thermal Mechanism

1 Heated gas expands

2 Gas number density is lowered

3 Ratio E/N increases

4 Ionization rate grows

5 Conductivity increases

Kinetic Mechanism

1 Active particles (radicals and excited
molecules) accumulate

2 Detachment, electron impact ionization
of radicals and associative ionization ac-
celerate

3 Balance between rates of generation and
loss of electrons changes

4 Conductivity increases

Depending on the regime, one mechanism dominates.
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Model of Streamer-to-Spark Transition: 1-D Gas Dynamics Model

1-D axisymmetric model

Vibrational-translational relaxation processes

Fast heating of air in the streamer channel

∂ρ

∂t
+∇ ⋅ (ρv⃗) = 0

∂

∂t
(ρv⃗) + ∇ ⋅ (ρv⃗ v⃗) = −∇p

∂ε

∂t
+∇ ⋅ {(ε + p) v⃗} = ηTQe +Qi +QVT

∂εv

∂t
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Model of Streamer-to-Spark Transition: 0-D Chemical Kinetics Scheme

15 components:
Neutral particles: N2, O2, O, N, NO, N2(A

3Σ+

u ), N2(B
3Πg), N2(C

3Πu),
N2(a

′1Σ−

u ), O2(a
1∆g)

Positive ions: O+

2 , O+

4 , O+

2 N2

Negative ions: O−, O−

2 , O−

3
Electrons: e

Effects of gains in electron energy in collisions with vibrationally excited
nitrogen molecules on the rate constants of ionization and dissociative at-
tachment processes [e.g., Benilov and Naidis, 2003]

Self-quenching of N2(A
3Σ+

u )

Associative ionization of N2(A
3Σ+

u ) and N2(a
′1Σ−

u )

General balance equation:

dne

dt
= (Fion + Fstep + Fd − Fa2 − Fa3 − Frec) ne
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Comparison with Experimental Results
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Figure: (left) Experimental and model streamer-to-spark transition times for various
applied voltages. The solid lines represent the transition times under normal pressure
(p=105 Pa) and reduced pressure (p=0.75×105 Pa). (right) Same model and experimental
data as in left panel but using reduced values of the applied field (EN0/N) and of the
transition times (τbrN/N0).
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Streamer-to-Spark Transition at 0 and 70 km Altitudes
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Figure: Streamer-to-spark transition time at 0 km (left) and 70 km (right) altitudes.
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Streamer-to-Spark Transition at 0 and 70 km Altitudes
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Figure: Distribution of the reduced gas density on the radial coordinate for EN0/N =
19 kV/cm at 0 km at t=0, 0.3, 0.6, and 0.9 µs (left), and at 70 km at t=10, 20, 30,
and 40 ms (right).
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Streamer-to-Spark Transition at 0 km Altitude
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Figure: Streamer-to-spark dynamics at sea level for EN0/N =
19 kV/cm.

The major cause of spark for-
mation:

Heated gas expansion

Accumulation of oxygen
atoms and other active
species [Naidis, 1999]

Increase with time in the
electron detachment rate

Existence of two- and
three-body processes
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Streamer-to-Spark Transition at 70 km Altitude
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Figure: Streamer-to-spark dynamics at 70 km for EN0/N =

19 kV/cm.

The major cause of spark for-
mation:

Gas expansion negligible

Accumulation of oxygen
atoms and other active
species [Naidis, 1999]

Increase with time in the
electron detachment rate

Disappearance of three-
body processes
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Scaling with Air Density
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Figure: Scaling of the breakdown times as a function of the neutral density for various
applied electric fields and altitudes (0, 30, 50, and 70 km).

τbr ∝ 1/N−1.11

faster than the timescale of Joule heating (∝ N−2)

slower than that of the vibrational–translational relaxation (∝ N−1)
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Principal Contributions

The principal results and contributions, which follow from the studies presented
in this work, can be summarized as follows:

1 A 1-D axisymmetric air density dependent model of streamer-to-spark tran-
sition is introduced.

2 The streamer-to-spark transition model results are successfully compared to
experimental data obtained by Černák et al. [1995] and Larsson et al. [1998]
at ground and near ground pressures.

3 For a broad range of air densities (between altitudes 0 and 70 km) studied
the streamer-to-spark transition time is demonstrated to scale with neutral
density approximately as: τbr ∝1/N therefore exhibiting a significant accel-
eration of the heating at low air densities in comparison with 1/N2 scaling
predicted on the basis of simple similarity laws for Joule heating.
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