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Objective and Motivation

§ Objective:
Ø Apply the idea of data assimilation to the plasmasphere

Ø To develop a plasmaspheric data assimilation technique to produce time-evolving 
maps of plasmasphere density 3D structures.

§ Motivation
Ø Data assimilation is a mathematical framework for the statistical union 

between observations and empirical or physics-based models.

Ø It allows for ingestion of various types of geospace measurements.
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§ Inspired by Ionosphere Data Assimilation 4D (IDA4D) [Bust et al. 2004]
Ø Model: 

– Global Core Plasma (GCP) Model [Gallagher et al., 2000]:
– Empirical, Kp driven 

Ø Data: 
– COSMIC Satellites: Total electron content (TEC) from precise orbit 

determination 
• Utilize upward looking GPS TEC signals

Ø Forward model: 
– Relating observations to state variables (electron density)

• Line-of-sight integration                                             
𝑻𝑬𝑪 = ∫𝑵𝒆

�
� 𝒛 𝒅𝒛 +𝜺𝒌 or           𝒚𝒌 = 𝑯𝒌𝒙𝒌 +𝜺𝒌

Ø Inverse model:
• Define an objective function: least squares solution

𝒙𝒌𝒂 = 	arg	min	
𝟏
𝟐 𝒚𝒌 − 𝑯𝒌𝒙𝒌 𝑹𝒌

<𝟏
𝟐

Ø H is ill-conditioned, in general. Cannot solve directly via xk = H-1yk
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§ A Priori constraint: add the background model – 3D-VAR
– Objective function combining the deviation from the data and the model
– 3D-VAR: estimate 3D structure of the unknown state

𝒙𝒌𝒂 = 	arg	min	
𝟏
𝟐 𝒚𝒌 − 𝑯𝒌𝒙𝒌 𝑹𝒌

<𝟏
𝟐 + 𝒙𝒌 − 𝒙𝒌𝒃 𝑷𝒃

<𝟏
𝟐

– Where Rk
-1 and Pb

-1 are the data error covariance and model error covariance, respectively.

– Analytical expressions exist:
𝒙𝒌𝒂 = 	𝒙𝒌𝒃 + 𝑷𝒌𝒃𝑯𝒌

𝑻 𝑹𝒌 + 𝑯𝒌𝑷𝒌𝒃𝑯𝒌
𝑻 @𝟏

𝒚𝒌 − 𝑯𝒌𝒙𝒌𝒃

𝑷𝒌𝒂 = 𝑷𝒌𝒃 − 𝑷𝒌𝒂𝑯𝒌
𝑻 𝑹𝒌 + 𝑯𝒌𝑷𝒌𝒃𝑯𝒌

𝑻 @𝟏
𝑯𝒌𝑷𝒌𝒃
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– Where Rk
-1 and Pb

-1 are the data error covariance and model error covariance, respectively.

Ø We find that with the ingestion of upward looking data alone, the problem 
remains ill-posed. 

Ø Hence, we further constrain the solution to be vertically smooth. 

𝒙𝒌𝒂𝑴𝑨𝑷 = 	arg	min	
𝟏
𝟐 𝒚𝒌 − 𝑯𝒌𝒙𝒌 𝑹𝒌

<𝟏
𝟐 + 𝒙𝒌 − 𝒙𝒌𝒃 𝑷𝒃

<𝟏
𝟐

+ 𝝀𝟐 𝑫(𝒙𝒌 − 𝒙𝒌𝒃)
𝟐

Where D and 𝝀	are the regularization functional and regularization parameter, respectively.
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@𝟏
𝒙𝒌𝒃 − 𝑫𝒙𝒌𝒂

Ø The analysis step is carried out in two stages in PDA. 
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Ø The analysis step is carried out in two stages in PDA. 
Ø Move the state forward in time via Gauss-Markov Kalman.
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An example of PDA Estimation results 
Model 3DVAR PDA

§ Equatorial cross sections of the plasmasphere electron 
density (m-3).        

§ The cross sections extend to L=4 (20,000 km).
§ Sun is at the top of the image, dawn to the right.
§ PDA eliminates unrealistic altitude gradients. 
§ A good agreement is demonstrated between DMSP-F16 

in-situ densities and PDA estimated densities. 

The authors are grateful to Dr. Hairston from UT Dallas for providing DMSP density measurements
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Summary and Future Directions

§ Imposing a smoothness constraint is necessary to avoid non-physical 
gradients in the vertical direction

§ An assimilative model that provides global 3D maps of electron density in the 
plasmasphere. 

§ A coupled ionosphere-plasmasphere data assimilation model**
§ The extension of the PDA grid to lower ionospheric heights

Ø Ground-based GPS TEC
Ø ISR measurements
Ø Ionosonde
Ø FUV 135.6 nm radiance measurements

§ The coupled ionosphere-plasmasphere model will allow more accurate 
specification, nowcast, and forecast of the upper atmosphere.

Ø Evolution of the plasmasphere during a geomagnetic storm (plumes)

* NASA-HSR grant #NNX16AG65G, R. Bishop, A. Coster, G. Bust, R. Nikoukar, D. Turner, and C. Lemon, Storm-time 
Dynamics of the Plasmapause and the Ionosphere/Magnetosphere System, 2014-2016. 
** G. Bust, A. Chartier, R. Schaefer, R. Nikoukar, E. Miller, JHU/APL. 




