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o Lightning-lonosphere Interactions
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Lightning-generated fields
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Lightning-generated fields

@ We treat return stroke as a current,
and ignore microphysics (leaders,
streamers, etc.)

@ QE field is electrostatic component
of lightning "antenna" field; decay
with time makes it
"quasi"-electrostatic

@ EMP is merely radiation field

@ somewhere in between is the
induction field

@ What happens when fields reach
ionosphere?
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Products of these fields

The QE field: The EMP field:
@ Produces sprites ~when |E| > Ej, @ Produces elves ~when |E| > Ex
the breakdown field @ Modifies the electron density, both
@ Produces halos under similar increases and decreases
conditions @ Injects whistler-mode waves into
@ May accelerate a relativistic electron magnetosphere
beam @ Whistlers in turn precipitate

electrons from the radiation belts
(LEP events)

Both fields "heat" the ionosphere,
by modifying the conductivity,
and thus deposit energy
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Questions to Address through Modeling

@ What is the relationship between the lightning parameters (I, /(t), h, etc) and
the QE field (i.e., altitude and time at which |E| > E,)?

@ What is the relationship between lightning parameters and TLE production:
sprites, halos, and elves?

© How much new ionization is produced?

© How bright do we expect the optical emissions to be (and how do they compare
to observations)?

© What is the intensity of whistler waves leaking through the ionosphere?

@ How much energy is deposited in the ionosphere (through heating and
ionization)?

@ What is the cumulative effect of a storm on the ionosphere?

© How do questions 1-7 depend on ionosphere conditions and B, (magnitude and
direction)?
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__ Pastwork |
Outline

9 Previous Modeling Efforts
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~___Pastwork |
Inan / Taranenko work

Inan et al. [1991]
Taranenko et al., [1992, 1993a,b]

@ 1D time-domain model of EMP only,
from 70-100 km altitude

@ fully kinetic solutions of Boltzmann
equation

@ Results: a few to tens of % change in
N, from Ejgo = 10—20 V/m pulses

@ Find that electron distribution at
80—-90 km altitude becomes stationary
in~10 us
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__ Pastwork |
Pasko et al. work

Pasko et al. [1995, 1996a,b,
1997, 1998, 1999]

@ Cylindrical 2D time-domain model
of QE field, from ground to 80 km

@ Solutions of Gauss’ Law and
Continuity equation

@ Used analytical descriptions of
field-dependent excitation rates
for ionization, attachment,
mobility, and optical emissions

@ Modeled relaxation of electric field
due to conductivity changes
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=
Veronis et al. [1999]

Also used by Barrington-Leigh et
al., [2001], Moore et al., [2003]
@ Cylindrical 2D time-domain model

of EMP field, from ground to 90
km

@ FDTD Solutions of Ampere’s and
Faraday’s Laws

@ Same calculations as Pasko of
excitations

@ 2D predictions of elves, including
"camera" view

@ Fully explicit time-domain 2D
FDTD model; no By
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=
Cummer (Duke) Research Group

Cummer, [1997], Hu and
Cummer, [2006], Hu et al.,
[2007], Li et al., [2008]

@ 2D cylindrical FDTD model of
Maxwell’s equations

@ time-dependent processes
calculated with same methods as
Pasko and Veronis

@ Earth curvature correction, PML
boundary

@ Prediction of breakdown time and
altitude due to QE field

@ includes B, with cylindrical
symmetry
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Outline

© Modeling in-cloud lightning EMP

Marshall et al (Stanford) Lightning-lonosphere Modeling 6/28/2011 12/29



The 3D EMP model

500 km

- 195 km

5000

Source Fields:

Tonosphere @ Time-domain solution of Hertz dipole
Ne () i equations

@ Mapped to ~60 km lower boundary
@ Include near-field and far-field terms

T 70km @ Dipole at any altitude / orientation
Field Mapped
Analytically to

Altitude, 70 km
Orientation,

Current — 1,0, \4 Source Dipole

Conducting Ground

* Ejpo: Electric field in V/m that
would be measured at 100 km
range on the ground 4

(E1p0 =30 V/m — [, >~ 100 kA)
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IC EMP Modeling

The 3D EMP model

500 km

500\““/ ‘ 195 km
Tonosphere
Ne (h)
********** 70 km
— "« Field Mapped
Analytically to
Altitude, 70 km

Orientation, _ )
Current — h, 0,7 \4 Source Dipole

Conducting Ground

N 2
2 _ Nala plasma freq. of species a

ws, =
pa mge€g

Weg =
ma

B
i gyrofreq. of species a

Model solves Maxwell’s Equations
and the Langevin Equation:

_ 0E -
VXH:eOTt+Jtot
= oH

VXE——},LOH

oJ = — .
&+ Vanda = €qw5,E — Wea X Ja

ot )

F = QaE + gaVa X By — VanQaVa

Ja = qaNaVa
V4 = velocity of species a
v
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Beginning with the development of finite difference eguations, and leading to the complete FDTD algorithm, this is a
coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students
and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to
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Nonlinear Interactions

Collision Frequency: Optical Emissions:
oJ =1 o = @ N First Positive
ot t = €oWpE — We x J @ N, Second Positive
@ N First Negative
@ v increases with N (neutrals) — @ O] First Negative
decreases with altitude @ N* Meinel
@ v increases with |E| 2 Vieine )
Electron Density: Update number density nj of

particles in excited state k:
lonization: M; + e~ — MJ +2 e~

@ Yields an increase in electron density ok =vNs — N + Z NnAm
Attachment: O, + e~ — O+ O~ ot T

@ Yields a decrease in electron density

ON,

ot

Marshall et al (Stanford) Lightning-lonosphere Modeling 6/28/2011 15/29

= (vi—"va)Ne




"Camera View" of Elves
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Results: Vertical Discharge (CG)
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Results: Vertical Discharge (CG)
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Results: Single In-Cloud Pulse
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Results: Multiple IC Pulses
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Outline

© Towards a full 3D QE/EMP model
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Shortcomings of the old model

@ Analytical description of lightning current not conducive to realistic pulses
@ Lower boundary artificially reflects - limited duration

@ Poor altitude resolution (~800 m)

@ Outdated method for solving Langevin equation

@ Lower boundary does not deal with QE field properly

@ Lower boundary limits pulse durations to < 20 us

@ Written in Fortran77... ugh.

Altitude (km)

—100 0 100
x-Distance (km)
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New 3D Model

Features:

@ Spherical coordinates (eliminates Earth-curvature problems)
Nonuniform orthogonal grid (variable Ar, down to 200 m in ionosphere)
Arbitrary By direction — requires 3D

PML boundary conditions

Time-dependent ionosphere parameters (Ng, Ve, etc.)

Inclusion of ion species

Easy parallelization via OpenMP
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Lee and Kalluri [1999] Method
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Lee and Kalluri [1999] Method

Usual 2nd-order update equations for E and H. J updated according to:

n+1/2 n—1/2 E n E
"i,j,k "i,j,k 5 r‘i+1/2,j,k+ ":;1/2,/,;(
J n+1/2 —A(A[) J n—1/2 n €oWwp K(AI) E ‘n LE n
e‘i,j,k - e‘i,j,k 2 Olijr1 2k -0 ij—1/2k
n1/2 n-1/2 E ‘" +E ‘
¢|i,j,k ¢|r‘,j,k Plijkr127 " Plijk—1/2
With the matrices:
C1w%,+cos(wbt) Ciwprwpg 7S1wb¢ C1wb,wb¢ + Sqwpe
A(t) = e = e V! [Clwpg wpr + Sywhg, Craw?y + cos(wpt) Ciwpe Whg — Sywpr
C1wb¢wb,7s1wb9 C1wb¢wbe + Sqwyp, C1w[27¢ + cos(wpt)
1 Cow?, + C3 Cowprwpe — Cawpg,  Cowprwpg, + Cawpe
K(t) = Q (e —1) = e Cowpe wpr + Cawpg, Cow?g + Cs Cowpe Wpgy — Cawpr
b Cowpgp wp — Cqwpg  Cowpg wpg + Cqwpy Czwgd) +C3

Where:

Sy =sin(wpt)/wp
Ci=(1 —coswbt)/w%

Cz

—(1—e Yh/v—ve ViCc, —e Vs

C3=v(1—e Vlcoswpt) + e Vlwpsinwpt

Cy=1—e Vlcoswpt—ve VIS
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Time dependent quantities: Excitation Rates
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QE/EMP model

E and J fields in Spherical 2D model
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3D QE/EMP model

AN and Optics

Change in Ne at time 225 us
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Long distance Propagation

120 T

E magnitude at time 0 us
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To do list:

2D model:
@ Include ion species, including AN;(t)
@ Run model over variety of ionospheres and lightning parameters
@ Calculate energy deposition
@ Create a model of energy deposition versus lightning parameters
@ Calculate stormwide, global, and seasonal cumulative effects

3D model:
@ Incorporate PML and ionosphere equations (Jr[i][j] — Jril[j][k])
@ Vary magnetic field direction and analyze effect
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