Performance of the IRI-2007 and SAMI2 models during Extreme Solar Minimum

J. Klenzing NASA / GSFC

D. Bilitza, AG Burrell, RA Heelis, J Huba, F Simoes

- Why is Extreme Solar Minimum important?
- How can we use C/NOFS data to constrain models?
- How well do IRI-2007 and SAMI2 predict topside ion densities during ESM?
- What happens when we change the empirical models driving SAMI2?

Extreme Solar Minimum

- Reduced EUV as measured by SOHO [Araujo-Pradere et al, 2011].
- Record low thermospheric density calculated from satellite drag [Emmert et al, 2010].
- Weak to non-existent prereversal enhancements during solar min [Pfaff et al, 2010].

[[]Araujo-Pradere et al, 2011]

 Increased detection of Equatorial Spread F [Candido et al, 2011] and Mid-latitude Spread F [Bhaneja et al, in preparation].

- Communication/Navigation
 Outage Forecast System
 - Launched in April 2008
 - 13° inclination orbit, 400-850 km
- CINDI (Coupled Ion Neutral Dynamics Investigation)
 - Ion Density, Composition
- VEFI (Vector Electric Field Instrument)
 - DC Electric fields (ExB drifts)

Precession of perigee through local time is ~65 days.

Reconstructed Profiles

91 days of consecutive data for low Kp, consistently low solar activity

[Klenzing et al, 2011]

Performance of IRI-2007

[Lühr and Xiong, 2010]

Performance of IRI-2007

- The C/NOFS orbit limits our comparisons with IRI.
- NmF2 predictions during 2008-2009 show similar performance to previous years when compared to ionosondes [Bilitza].
- Likely to be a change in the height of the F-peak.

SAMI2 is Another Model of the Ionosphere

 Uses continuity and momentum equations to simulate seven species of ions along magnetic field lines.

SAMI2 is Another Model of the Ionosphere

 Uses continuity and momentum equations to simulate seven species of ions along magnetic field lines.

SAMI2 Comparisons

Model	Provides	Strategy
MSIS	N _n and T _n profiles	Use MSIS scalars based on satellite drag calculations [<i>Emmert and Siefring, private</i> communication]
EUVAC	Ionization Rates	Reduce EUV by 15%
		[based on reported EUV proxies from Solomon et al, 2010]
Fejer-Scherliess	ExB drifts	Use VEFI drift climatology
HWM07	Neutral Winds	Unchanged in this iteration

- MSIS is known to overestimate neutral density during the recent minimum [e.g., Emmert et al, 2010].
- Preliminary results for MSIS scalars based on satellite drag studies.

[Emmert and Siefring, private communication]

- VEFI drifts are averaged in the longitude sector for the SAMI2 runs.
- Only quiet time are used, and spread-F effects are removed in the averages.
- Drifts are downward in the early afternoon!

• For use in SAMI2, drifts are fit to an 8th order Fourier series.

Afternoon / Nighttime greatly improved with VEFI drifts!

- Changes in neutral composition may be more complicated.
- Variability of meridional drifts in SAMI2.
- Effects of neutral winds.
- Accurate modeling of non-migrating tides.
- Thermal effects.

- Both the IRI-2007 and SAMI2 models tend to overestimate topside density in the afternoon / evening sectors during the recent solar min.
- Using the VEFI drifts in SAMI2 produces better density estimates in the afternoon and evening.
- Full sensitivity study of SAMI2 is in progress.

Bonus Slides

Note there is no change in hmF2 for a reduction in EUVAC!

December Solstice 2008 All Longitudes, Mag Dip Equator

December Solstice 2009 All Longitudes, Mag Dip Equator

December Solstice 2010 All Longitudes, Mag Dip Equator

Dec Sol 2010

