

The Response of Geomagnetic Daily Variation and Ionospheric Currents to the Annular Solar Eclipse on 21 June 2020

Junjie Chen^{1,2}, Xiaocan Liu³, Jiuhou Lei¹ and Tong Dang¹

¹University of Science and Technology of China ²The University of Hong Kong ³China Earthquake Administration

2022 CEDAR

□ Background: Solar Eclipse Effect

Data and Model

□ Results: Observations and Simulations

Summary

Solar Eclipse Effect

Solar eclipse -> EUV radiation -> Ne and conductivity -> Ionospheric current and ground geomagnetic daily variation?

Previous studies used a single magnetometer station or a few ones, which hardly investigates the global responses

The Annular Solar Eclipse on 21 June 2020

On 21 June 2020, an annular solar eclipse swept through the entire South China from west to east

Magnetometer Observatories

The dense magnetometer network provides an opportunity to address the LT and latitudinal dependence of geomagnetic responses during solar eclipses

Model

Background: Solar Eclipse Effects

Data and Model

□ Results: Observations and Simulations

Summary

Observatories Along the Totality Path (Low Latitude)

Observatories on the Chain Around the Noon

Simulated Geomagnetic Daily Variation

Ampère's Circuital Law

Northward $\Delta X \leftarrow Eastward Current$

Eastward $\Delta Y \leftarrow$ Southward Current

Upward $\Delta Z \leftarrow$ Counterclockwise Current

>The ground geomagnetic daily variation is induced by ionospheric currents

Global Ionospheric Current

Ionospheric currents are corresponding to ground ΔX and ΔY
The eclipse decreases the global ionospheric currents

Ionospheric Equivalent Sq Current

Equivalent Current Function (Positive Counterclockwise)

 $\nabla \times F_{EC} = J_{iono}$

$$\nabla \cdot J_{iono} = 0$$

The ionospheric current system caused by the solar eclipse has a counter-Sq pattern

Physical Mechanism

- Solar eclipse
 - -> reduce local conductivity and current
 - -> electric fields and currents in non-eclipse region to satisfy the current continuity
 - -> ionospheric counter-Sq current
 - -> ground geomagnetic daily variation

Summary

Extensive geomagnetic data and a global physical model shows that:

- The response of geomagnetic daily variation and ionospheric currents to the solar eclipse shows local time and latitudinal dependence.
- > The eclipse mainly reduces ΔX and ΔY near the eclipse totality and ΔZ around the early afternoon aside the totality.
- There is also a response of ionospheric currents in the non-eclipse shaded regions in both northern and southern hemispheres.

Overall, the ionospheric current system caused by the solar eclipse has a counter-Sq pattern.

Liu, X., Chen, J., Han, P., Lei, J., Dang, T., Huang, F., et al. (2022). The response of geomagnetic daily variation and ionospheric currents to the annular solar eclipse on 21 June 2020. *Journal of Geophysical Research: Space Physics*, 127, e2022JA030494. https://doi.org/10.1029/2022JA030494

Thanks!