Intermediate and transisitonal scale structure in midlaitude E_s layers D. L. Hysell¹, E. Nossa¹, M. F. Larsen², M. P. Sulzer³, and S. A. Gonzalez³

(1) Cornell University (2) Clemson University (3) Arecibo Observatory June, 2012

scale	size	feature
large	100's km	layers
intermediate	10's km	rolls
${ m transitional}$	$few \ km$	primary plasma waves
small	few m	secondary plasma waves

intermediate scales

intermediate scales

intermediate scales

neutral wind hodograms

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

coherent scatter picture

$$\psi^{\prime\prime} + \left(\frac{N^2}{W^2} - \frac{W^{\prime\prime}}{W} - k^2\right)\psi = 0$$

$$W \equiv (k_x U + k_y V - w)/k$$

□▶ < ॑॑॑॓ ▶ < ё ▶ < ё ▶ ≧ うへで 9 / 16

eigenvalue problem

・ロ・・一日・ ・川・・ 山・ ひゃう

transitional scales

parallel wavenumbers

$$\begin{split} \frac{\partial n}{\partial t} + \underbrace{\mathbf{v}_{e} \cdot \nabla_{\perp} n}_{\text{ExB, gd}} + \underbrace{n \nabla_{\perp} \cdot \mathbf{v}_{e}}_{\text{FB}} &= 0, \quad k_{\parallel} = 0 \\ &= k_{\parallel}^{2} n_{\circ} |\mu_{e\parallel}| \phi \end{split}$$

$$\phi = \frac{ik_{\perp}(\mu_{x}E_{\circ} - \mu_{\perp}E_{p}) - D_{\perp}k_{\perp}^{2} - D_{\parallel}k_{\parallel}^{2}}{\mu_{\perp}k_{\perp}^{2} + \mu_{\parallel}k_{\parallel}^{2} - ik_{\parallel}\mu_{\parallel}/L} \frac{n}{n_{\circ}}$$

$$egin{array}{rcl} \lambda_{ot}({
m max \ growth}) &=& 4\pi L\sqrt{\psi} \ \gamma &\propto& k_{ot}\mu_{iot}E \end{array}$$

drift waves

$$\begin{split} \omega_r &= \frac{3}{4} \mu_{\perp i} \mathbf{k}_{\perp} \cdot \mathbf{E}_{\circ} + \left(\frac{1}{4} \mu_{\perp i} \frac{\mu_{\times}}{\mu_{\perp}} - \mu_{\times i} \right) \left(\mathbf{k}_{\perp} \times \mathbf{E}_{\circ} \right) \cdot \hat{b} \\ &- \frac{1}{4} \frac{\mu_{\perp i}}{\mu_{\perp}} \left(k_{\perp}^2 D_{\perp} + k_{\parallel}^2 D_{\parallel} \right) \\ \gamma &= \frac{1}{4} \mu_{\perp i} \left[-\mathbf{k}_{\perp} \cdot \mathbf{E}_{\circ} + \frac{\mu_{\times}}{\mu_{\perp}} \left(\mathbf{k}_{\perp} \times \mathbf{E}_{\circ} \right) \cdot \hat{b} \right] - D_{\perp a} k_{\perp}^2 - D_{\parallel a} k_{\parallel}^2 \end{split}$$

 given

$$egin{array}{rcl} \mu_\perp k_\perp^2&=&\mu_\parallel k_\parallel^2\ k_\parallel L&=&1/2 \end{array}$$

3D numerical simulation

intermediate, transitional, and small scales

- *E*-region coherent scatter occurrence modulated by MSTIDs
- *E*-layer rolls unaffected by MSTIDs
- Most likely coupling via field-aligned currents, current closure

- Roll-like deformations in E_s layers consistent with neutral dynamic instability.
- Kilometer-scale waves in the layers consistent with collisional drift-wave instability.
- The roll-like deformations are prone to produce large polarization electric fields which drive the drift waves, particularly when some (but not too much) current is allowed to close through the *E* region.