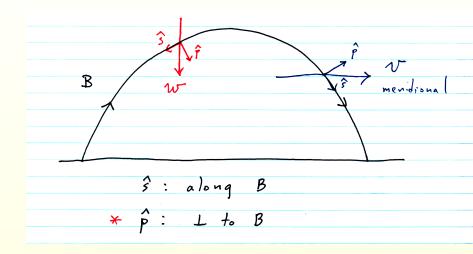
VERTICAL WINDS, GRAVITY WAVES AND EQUATORIAL SPREAD F

J.D. Huba, J. Krall and D. Fritts* Plasma Physics Division Naval Research Laboratory Washington, DC NSF CEDAR Meeting Santa Fe, NM June, 2012

* GATS, Inc.

Research supported by ONR/NASA


- ionosphere models consider zonal (U) and meridional (V) winds
- zonal winds (U) drive vertical drifts (i.e., neutral wind dynamo) while meridional winds (V) push plasma along the geomagnetic field
- what about vertical neutral winds (W)?

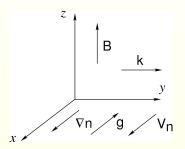
NEUTRAL WIND

- can be \sim 50 m/s in auroral zone and \sim 20 m/s in equatorial region (associated with gravity waves)
- \bullet latter point may be relevant to equatorial spread F

NEUTRAL WIND

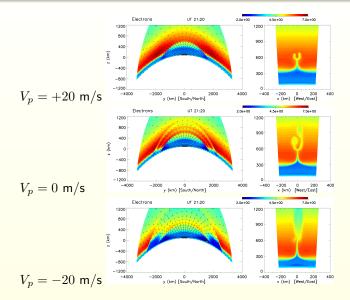
vertical/meridional neutral winds

• use continuity and current conservation

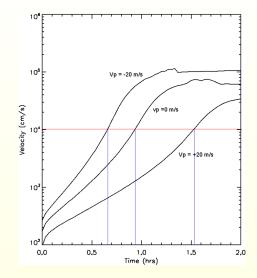

$$\frac{c}{B}\delta E_y = i\omega L_n \frac{\delta n}{n_0}.$$

$$\delta J_y = \sigma_P (\delta E_y - \frac{B}{c} V_n) + \sigma_{Hi} \frac{B}{c} \frac{1}{\Omega_i} g$$

• linear growth rate


$$\gamma = \frac{g}{\nu_{in}L_n} - \frac{V_n}{L_n},$$

• $V_n > 0$ (upward): stabilizing $V_n < 0$ (downward): destabilizing


SAMI3/ESF MODEL

agrees with simple theory

SAMI3/ESF MODEL

plot of maximum upward velocity

GRAVITY WAVES

high-frequency, deep atmosphere dispersion relation:

$$m^{2} = k^{2} \left(\frac{N^{2}}{\omega_{i}^{2}} - 1 \right) - \frac{1}{4H^{2}}$$

where

 $\begin{array}{ll} k = 2\pi/\lambda_x & \lambda_x: \mbox{ horizontal wavelength (= 250 km)} \\ m = 2\pi/\lambda_z & \lambda_z: \mbox{ vertical wavelength} \\ N = 2\pi/T_B & T_B: \mbox{ buoyancy period (= 600 sec)} \\ \omega_i = 2\pi/T_{GW} & T_{GW}: \mbox{ intrinsic gravity wave period} \\ H & H: \mbox{ scale height (= 30 km)} \end{array}$

GRAVITY WAVE EQUATION

$$u' = Au_0 \sin(kx + mz - \omega t)$$
 $w' = -\alpha u'$

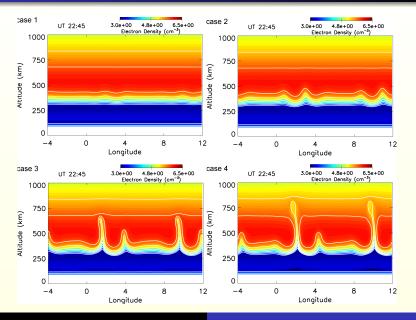
with

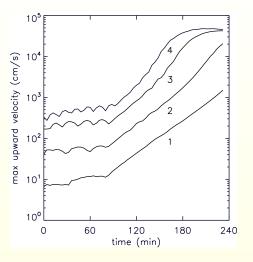
$$\omega = kc = \omega_i + kU$$
$$A = (1 - \exp(-t/T_{GW}))\cos((x - x_o)(\pi/L_x))$$
$$\cos((y - y_o)(\pi/L_y))\cos((z - z_o)(\pi/L_z))$$

and

 $L_x = 500$ km, $L_y = 2000$ km, $L_z > 250$ km (integer depth in λ_z)

GRAVITY WAVES PARAMETERS

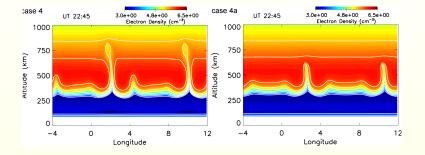

estimate vertical wavelengths and velocities

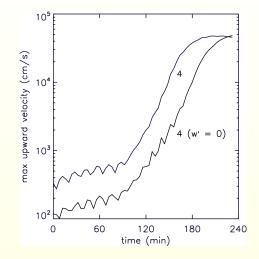

case	N/ω_i	T_{GW} (min)	λ_z (km)	$c \; (m/s)$	w'/u'
1	6	60	43	69	-0.17
2	3	30	90	139	-0.35
3	2	20	156	208	-0.60
4	1.5	15	278	278	-1.10

SAMI3/ESF simulations:

- uniform zonal wind (100 m/s)
- imposed wind perturbations (w'/u')
- centered at lat = 10° and alt = 250 km
- longitudinal width = 8° grid (nz, nf, nl) = (101, 202, 192)

contour plots of the 4 cases




proxy for growth rate: max upward velocity

- onset time roughly the same for all cases
- initial perturbation largest for longest vertical wavelength case (i.e., shortest gw period)
- case 4: onset to saturation \sim 60 min

influence of w': case 4 with $w' \neq 0$ and w' = 0

influence of w': initial perturbation smaller with w' = 0

• gravity waves can initiate ESF

SUMMARY

- gw perturbation velocities u' and w' affect electrodynamics and generate density irregularities
- large vertical wavelength modes most effective (few hundred km)
- vertical wind w' can play a role: both destabilizing and stabilizing
- next step: incorporate realistic gravity waves from simulations into SAMI3/ESF