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The Daily Weather Forecast is a Product 
of Data Assimilation



http://guvi.jhuapl.edu

On the One Hand, we have large Quantities of 
Data

  Different kinds of instruments 
measuring different quantities 
(apples and oranges)

  Observations are in different 
places

  Observations have different 
cadence and availability

  Observations have different error 
statistics

Difficult to create coherent Picture



On the Other Hand, we have Mature 
Theoretical/Numerical Models

  Models contain our ‘knowledge’ of the physics

•   O+ - O Collision Frequency 
•   Secondary Electron Production 
•   Downward Heat Flow 
•   Chemical Reaction Rates
•   External Forcing
•   Etc. 

 Uncertain Parameters in Physics-Based Model



Objectives

  Optimally combine Data and the Model to create  
     coherent Picture of the Space Environment

 Solution satisfies the physical laws and ‘agrees’ with the data 
and the model as best as possible (within their error bounds) 



Data Assimilation Tasks

  Develop Physical Model

  Develop Assimilation Algorithm

  Data Acquisition Software

  Data Quality Control

  Executive System

  Validation Software  



Brief Historical Background

Data Assimilation in the Atmosphere:
  Initial Attemps started in the 1950th (NWP)

Data Assimilation in the Oceans:
  Began with large scales (mean properties) about 30 yrs ago
  Regional effords (e.g., Gulf stream) [15-20 yrs ago]
  Produce operational upper ocean now- and forecast.



Data Assimilation in Space Sciences

  Assimilative Mapping of Ionospheric Electrodynamics
    (AMIE, Richmond and Kamide, 1988)

  Initial Testing of Kalman Filter for Ionospheric Electron
    Density Reconstructions (Howe et al., 1998)

 Data Assimilation Models for the Ionosphere (late 1990): GAIM 
models, IDA4D

  Data Assimilation Models for the Thermosphere (Minter et al., 
    Fuller-Rowell et al.)

  Data Assimilation for the Radiation Belts

  Initial Attempts for Solar Data Assimilation



What can we learn from Meteorology?

Data Assimilation Techniques have been used in Meteorology for the last 50 years

  Most Accurate Specifications and Forecast Models are Those that 
   Assimilate Measurements into a Physics-Based Numerical Model

  Better Predictions are Obtained for the Atmosphere

–  When the Data are Assimilated with a Rigorous Mathematical Approach



Data Assimilation Techniques

€ 

  3-d Var

  4-d Var

  Kalman Filter
  xf = Mx + η
  Pf = MPMT + Q
  yo = Hx + ε
  K = PfHT (HPfHT  + R)-1
  xa = xf + K(yo - Hxf)
  Pa = (I-KH)Pf

€ 

J δx( ) =1/2δxTP−1δx +1/2 H δx + xb( ) − yo[ ]
T
R−1 H δx + xb( ) − yo[ ]

€ 

J δx( ) =1/2δx0
TP−1δx0 +1/2

i= 0

n

∑ Hi Mi,o(x0)( ) − yio[ ]
T
R−1 Hi Mi,0(x0)( ) − yio[ ]



The Data Assimilation Cycle

‘Best-Guess’ 
Background

Short-Term
Forecast Analysis

Data
Collection

Quality
Control

Forecast

Physical Model creates a forecast which is adjusted by the Data to create an
 ‘analysis’, which serves as the start for the next model forecast. In the analysis

 the Data Errors and Model Errors are used as weights.



€ 

Fundamental Concept of 3D-Var

Start with a forecast or 
an estimate of the state 
(background)

‘Best-Guess’ 
Background

Short-Term
Forecast Analysis

Data
Collection

Quality
Control

Forecast
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Fundamental Concept of 3D-Var

‘Best-Guess’ 
Background

Short-Term
Forecast Analysis

Data
Collection

Quality
Control

Forecast

Minimize the difference between the 
analysis and a weighted combination 
of 

  the background and 
  the observations.
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The Cost Function

                               J = JB + JO + JC

JB: Weighted fit to the background field

JO: Weighed fit to the observations

JC: Constraint which can be used to impose 
       physical properties (e.g., analysis should satisfy 
       Maxwell’s equations, continuity equation, …)

To produce the analysis we want to minimize a 
“Cost Function” J  which consists of:



A typical form for the JB term is:

JB = (xA - xB)T B-1 (xA - xB)

Where: 

xA: Analysis Variable (e.g., Electron Density, Temperature, …)

xB: Background Field, obtained from the Model Forecast

B  : Background Error Covariance Matrix: 
•  How good is your Background
•  What are covariances between different elements

€ 

The Cost Function, cont.

The background error covariances are only poorly known



A typical form for the cost function for the observations is:

JO = [y - H(xA)]T R-1 [y - H(xA)]

Where: 

y  : Represents all Observations

H : Forward Operator which maps the Grid Point Values to 
      Observations (can be linear or nonlinear)

R  : Observation Error Covariance Matrix: 
How good is your data? 
(also includes the representativeness of the data)

€ 

The Cost Function, cont.



€ 

The Cost Function, cont.

The Physical Properties/Model were used to:

  Obtain the best possible background field
  To constrain the Analysis

  Cost function and the constraints are not explicitly 
time dependent

 A temporal model is not necessarily required

 Snapshots



€ 

Fundamental Concepts of 4D-Var

4D-Var introduces the temporal dimension to data assimilation

Find a close fit to the data that is consistent with the 
dynamical model over an extended period of time.

  Find the the closest trajectory

€ 

J δx( ) =1/2δx0
TP−1δx0 +1/2

i= 0

n

∑ Hi Mi,o(x0)( ) − yio[ ]
T
R−1 Hi Mi,0(x0)( ) − yio[ ]

 The Model The Data
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Fundamental Concepts of 4D-Var

4D-Var introduces the temporal dimension to data assimilation

Find a close fit to the data that is consistent with the 
dynamical model over an extended period of time.

  Find the the closest trajectory

€ 

J δx( ) =1/2δx0
TP−1δx0 +1/2

i= 0

n

∑ Hi Mi,o(x0)( ) − yio[ ]
T
R−1 Hi Mi,0(x0)( ) − yio[ ]

Model Error Covariance Data Error Covariance



  M -  State Transition Matrix
  P  -  Model Error Covariance
  y  -  Data Vector
  R -  Observation Error Covariance
  X -  Model State Vector
  η  -  Transition Model Error
  Q - Transition Model Error Covariance
  H  - Measurement Matrix
  ε  -  Observation Error
  K  - Kalman Gain

Model Error Covariance

Data Error Covariance



  M -  State Transition Matrix
  P  -  Model Error Covariance
  y  -  Data Vector
  R -  Observation Error Covariance
  X -  Model State Vector
  η  -  Transition Model Error
  Q - Transition Model Error Covariance
  H  - Measurement Matrix
  ε  -  Observation Error
  K  - Kalman Gain

Model



Model
The Dynamical Model entered 
the Filter:

  Evolution of the State Vector 
(make a Forecast)

  Evolution of the Error 
Covariance Matrix



Model
The Dynamical Model entered 
the Filter:

  Evolution of the State Vector 
(make a Forecast)

  Evolution of the Error 
Covariance Matrix

 Error Covariance Matrix becomes time-dependent and 
evolves with the same physical model as the state!

This is computationally the most expensive  
step in the Kalman filter 



A rocket is flying through space launched from an initial 
location with an initial velocity. 

Example: Tracking of a Rocket with a Kalman Filter 

€ 

m d2x
dt 2 = ma    ⇒

€ 

dv
dt

= a

€ 

dx
dt

= v

€ 

⇒   xi+1 ≈ xi + vi ⋅ dt

€ 

⇒   vi+1 ≈ vi + ai ⋅ dt

€ 

⇒   ai+1 ≈ ai
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xi+1 = M xiIn Kalman filter we have:



Example: Tracking of a Rocket with a Kalman Filter 
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Pi+1 = M Pi M
TPropagate Error Covariance Matrix:
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At the next time step:



Example: Tracking of a Rocket with a Kalman Filter 
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Pi+1 = M Pi M
TPropagate Error Covariance Matrix:

At the next time step:
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The Rocket 

Position Velocity Acceleration 



Kalman Filter has specified the external Forcing

Forcing is specified based on the Dynamics 
provide by the physical Model



Next, consider the more complicated situation:

  Much more complicated Differential Equations

  Global Reconstruction

  Many observations 

  Different kinds of instruments measuring different 
    quantities

  Observations are in different places

  This is the Situation in the Ionosphere



Model

This is computationally the most expensive  
step in the Kalman filter 



Ways to get around the Problem 

 Approximate Kalman Filters 

Do not evolve Error Covariance Matrix with Model 

INSTEAD 

Obtain Error Covariance Matrix from an ENSEMBLE of  
Model runs 

•  Band-Limited Kalman Filter
•  Reduced State Kalman Filter
•  Gauss-Markov Kalman Filter
•  Ensemble Kalman Filter



 Gauss-Markov Kalman Filter Model�
(GAIM-GM)

  Specification & Forecast of the Global Ionosphere

•  Ionospheric Forecast Model provides background densities

•  Kalman filter solves for derivations from the background

•  Uses simple statistical model instead of full physics

•  Error covariances are calculated from 1104 IFM model runs

•  Assimilates 5 data types: 
•  Slant TEC from ground-based GPS receivers
•  Bottomside Ne Profiles from Ionosondes
•  UV radiances (1356Å and 911Å)
•  DMSP IES in situ Ne
•  Slant TEC from COSMIC



GAIM-GM  Model Run for November 20, 2003 Storm



Illustration of Locations of
GPS/TEC Data. Slant TEC 
Values have been mapped 
to the Vertical Direction

GAIM Specification of TEC 
Distribution



Illustration of Locations of
GPS/TEC Data. Slant TEC 
Values have been mapped 
to the Vertical Direction

GAIM Specification of TEC 
Distribution



•  Ensemble Kalman Filter
  30 Global Simulations are Launched at Each Assimilation Time Step 

•  Physics-based Ionosphere-Plasmasphere Model
•  Model Physics is embedded in Kalman filter

•  Same 5 Data Sources as Gauss-Markov Model

•  Provides both specifications for the ionospheric 
plasma densities and drivers.

Full Physics Kalman Filter Model



Determination of Ionospheric Drivers Using 
The Full Physics-Based GAIM Model

  Ionospheric Sensitivities to Drivers are embedded in the
    Covariances and are automatically and at each Time Step  
    calculated.

  Drivers include:

•  Electric Fields
•  Neutral Wind
•  Composition
•  … 



Example of Full Physics-Based Kalman Filter Model�

•  Several Days in March/April of 2004

•  Geomagnetically Quiet Period

•  Data Assimilated
o  Slant TEC from 162 GPS Ground Receivers

•  Use Ionosonde Data for Validation



Comparison with Ionosonde Data

Ionosonde Data were NOT assimilated!



 Data Issues

•   Are There Enough Data?
•   What is the Data Quality?
•   Are Error Estimates Available?
•   Are Data Available in Real Time?
•   Are Different Data Types Required?



 Missing Physics

   How Does Missing or Incomplete Physics Affect the Data 
Assimilation Results? 

•   Simulate the Ionosphere with the IPM
•   Modify the Simulated Ionosphere to Account for 

Missing Physics  
•   Generate Synthetic Data from Real Locations 
•   Reconstruct the Ionosphere with the Gauss-Markov Data   
Assimilation Model 
•   Compare Reconstructed Ionosphere with 

Original Ionosphere  



Gauss-Markov Reconstruction 
With Synthetic Data

Results Look Reasonable, but 
are Wrong

Ionosphere That Produced Synthetic 
Data

Four Bubbles



Summary


