UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS

Tomoko Matsuo University of Colorado, Boulder Space Weather Prediction Center, NOAA

Y

What is data assimilation?

Combining Information

observations

directly measured or retrieved quantities *incomplete in space and time*

Bayes Theorem - Bayesian statistics provides a coherent

probabilistic framework for most of DA approaches [e.g., Lorenc, 1986]

<u>prior</u>

 $p(\boldsymbol{x})$

observation likelihood

$$p(oldsymbol{y}|oldsymbol{x})$$

probability distribution of y when x have a given value

<u>posterior</u>

$$p(\boldsymbol{x}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})$$

Bayes Theorem - Bayesian statistics provides a coherent probabilistic framework for most of DA approaches [e.g., Lorenc, 1986]

<u>prior</u>

<u>obser</u> likelih

$$p(\boldsymbol{x}) \sim \mathcal{N}(\boldsymbol{x}_b, \mathbf{P}_b) \qquad \boldsymbol{x} = \boldsymbol{x}_b + \boldsymbol{\epsilon}_b$$

$$rac{\mathbf{vation}}{\mathbf{nood}} \quad p(oldsymbol{y} | oldsymbol{x}) \sim \mathcal{N}(\mathbf{H}oldsymbol{x}, \mathbf{R}) \quad oldsymbol{y} = \mathbf{H}oldsymbol{x} + oldsymbol{\epsilon}_y$$

probability distribution of y when x have a given value

<u>posterior</u>

 $p(\boldsymbol{x}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})$

 $p(\boldsymbol{x}|\boldsymbol{y}) \sim \mathcal{N}(\boldsymbol{x}_a, \mathbf{P}_a)$ where

$$egin{aligned} \mathbf{x}_a &= \mathbf{x}_b + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}_b) \ \mathbf{P}_a &= (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}_b \ \mathbf{K} &= \mathbf{P}_b\mathbf{H}^T(\mathbf{H}\mathbf{P}_b\mathbf{H}^T + \mathbf{R})^{-1} \end{aligned}$$

What is covariance? - two variables case **Bayes theorem** <u>prior</u> $p(oldsymbol{x} \,|\, oldsymbol{y}) \propto p(oldsymbol{y} \,|\, oldsymbol{x})) p(oldsymbol{x})^{2}$

$$p(\boldsymbol{x}) \sim \mathcal{N}(\boldsymbol{x}_b, \mathbf{P}_b)$$

$$\boldsymbol{x}_b = \begin{pmatrix} 2.3 & 2.5 \end{pmatrix}$$
 $\mathbf{P}_b = \begin{pmatrix} 0.225 & 0.05 \\ 0.05 & 0.15 \end{pmatrix}$

observation-likelihood $p(\boldsymbol{y}|\boldsymbol{x}) \sim \mathcal{N}(\mathbf{H}\boldsymbol{x},\mathbf{R})$

 $H = (1 \ 0)$ $x_1: observed$ x_2 : unobserved

What is covariance? - in spatial sense

Assimilative Mapping of Ionospheric Electrodynamics

[Richmond and Kamide, 1988]

Inverse procedure to infer maps of

$$ec{E}, ec{\Phi}, ec{I}_{\perp}, ec{J}_{\prime\prime}, \Delta ec{B}$$

From observations of

Í,

IS or HF radar, Satellites

IS radar

 $\vec{J}_{||}$ Satellite or ground-based magnetometers

Assimilative Mapping of Ionospheric Electrodynamics

[Richmond and Kamide, 1988]

<u>prior</u>

observations

AMIE – relationship among electromagnetic variables

Inverse procedure to infer maps of

$$ec{E}, ec{\Phi}, ec{I}_{\perp}, ec{J}_{/\!/}, ec{\Delta}ec{B}$$

From observations of

 $\widetilde{J}_{_{//}}$

 I_{\perp} IS radar

Satellite or ground-based magnetometers

IS or HF radar, Satellites

<u>linear relationship</u> (for a given $\underline{\Sigma}$) $F(\vec{E}) = \Phi, \vec{I}_{\perp}, \vec{J}_{\parallel}, \Delta \vec{B}$ $\vec{E} = -\nabla \Phi$ $\vec{I}_{\perp} = \underline{\Sigma} \cdot \vec{E}$ $\vec{J}_{||} = \nabla \cdot \vec{I}_{||}$ \vec{I}_{\perp} , $\vec{J}_{\parallel} \longleftrightarrow \Delta \vec{B}$ **Biot-Savart's law**

AMIE – basis functions as forward operator

functional analysis

- $\Phi = \Psi x$
 - Ψ : spherical harmonics
 - x : coefficients
- $\vec{E} = -\nabla \Psi x$

forward operator

$$oldsymbol{y} = \mathbf{H}oldsymbol{x}$$

= $F(-\nabla\Psi) oldsymbol{x}$

<u>linear relationship</u> (for a given $\underline{\Sigma}$) $F(\vec{E}) = \Phi, \vec{I}_{\perp}, \vec{J}_{\parallel}, \Delta \vec{B}$ $\vec{E} = -\nabla \Phi$ $\vec{I}_{\perp} = \underline{\Sigma} \cdot \vec{E}$ $\vec{J}_{||} = \nabla \cdot \vec{I}_{||}$ \vec{I}_{\perp} , $\vec{J}_{\parallel} \longleftrightarrow \Delta \vec{B}$ **Biot-Savart's law**

Ideas to improve AMIE: Adaptive covariance $\mathbf{x}_a = \mathbf{x}_b + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}_b)$ $\mathbf{K} = \mathbf{P}_b(\alpha)\mathbf{H}^T(\mathbf{H}\mathbf{P}_b(\alpha)\mathbf{H}^T + \mathbf{R})^{-1}$

Ideas to improve AMIE: Adaptive covariance $\mathbf{x}_a = \mathbf{x}_b + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}_b)$ $\mathbf{K} = \mathbf{P}_b(\alpha)\mathbf{H}^T(\mathbf{H}\mathbf{P}_b(\alpha)\mathbf{H}^T + \mathbf{R})^{-1}$

For given observations

Ideas to improve AMIE: Multi-resolution basis functions

Spherical Harmonics

 $Y_l^m(\theta,\phi) = N_l^{|m|} P_l^{|m|}(\cos\theta)(\cos(m\phi) + i\sin(m\phi))$

<u>Wavelets</u>

Mother wavelet functions

Ideas to improve AMIE: what to minimize $\Lambda \mathbf{R}$ or \mathbf{E} 03 August 2010 11:50:0 How to take advantage of new space-based observations? 12 **AMPERE** Inverse procedure to infer maps of 18 Active Magnetosphere and $\vec{E}, \boldsymbol{\Phi}, \vec{I}_{\perp}, \vec{J}_{\parallel}, \Delta \vec{B}$ Planetary ectrodynamics Response From observations of É IS or HF radar, Satellites I_{\perp} IS radar $ec{J}_{\prime\prime}$ Satellite or ground-based magnetometers

Summary

- Bayesian statistics as an overarching framework for many of DA methods
- Assumptions: Gaussian distribution, Linear H...
- Role of Covariance in spatial interpolation
- Applications to high-latitude electrodynamics (AMIE)
- Functional analysis of $\, {f E}, {f \Phi}, {f I}, {f J}, \Delta {f B} \,$
- Kalman update of spherical hamonics coefficients
- Current issues
 - Resolution: global function ->> compactly supported functions
 - New space-based magnetometer observations ->> ${f E}$ or $\Delta {f B}$
 - Improve conductance models
 - Adaptive Covariance