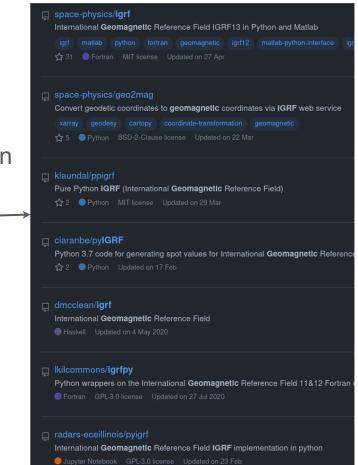
IGRF in Python

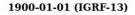
Community consensus & tools for near-Earth geomagnetic field models

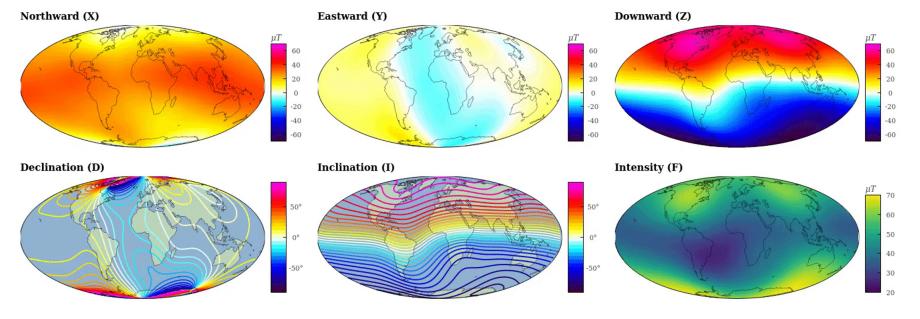

Ashley Smith <u>ashley.smith@ed.ac.uk</u> Leslie Lamarche <u>leslie.lamarche@sri.com</u>

Outline

- IGRF is used for many different purposes
- Need a simple reference Python implementation of IGRF, agreed by community
- Could coordinate efforts better
- More generally:

A pattern to follow for other models? e.g. IRI, MSIS-E, ...


(considering sustainability, wide user base, ...)



What is IGRF?

International Geomagnetic Reference Field 13

defined over 1900-

What is IGRF? $\vec{B} = -\nabla V$ $V = R_E \sum_{l=1}^{N} \sum_{m=0}^{l} \left(g_l^m \cos m\phi + h_l^m \sin m\phi \right) \left(\frac{R_E}{r} \right)^{l+1} P_l^m (\cos \theta)$

Spherical harmonic description up to degree I=13 (195 Gauss coefficients) Snapshot every 5 years with linear interpolation between

<pre># 13th Generation International Geomagnetic Reference Field Schmidt semi-normalised sphe # in units nanoTesla for IGRF and definitive DGRF main-field models (degree n=1,8 nanoTestic)</pre>													sphe	
# i	inι	uni	its nand	oTesla †	for IGR	and de	finiti	ve DGRF	main-fi	ield moo	dels (de	egree n≕	=1,8 nar	noT€
c/s	s de	eg	ord IGF	RF IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	DGRF	DGRF	0
g/ł	h n	m	1900.0	1905.0	1910.0	1915.0	1920.0	1925.0	1930.0	1935.0	1940.0	1945.0	1950.0	195
g	1	0	-31543	-31464	-31354	-31212	-31060	-30926	-30805	-30715	-30654	-30594	-30554	-30
g	1	1	-2298	- 2298	- 2297	-2306	- 23 <mark>1</mark> .7	-2318	-2316	-2306	- 2292	- 2285	-2250	-2
h	1	1	5922	5909	5898	5875	5845	5817	5808	5812	5821	5810	5815	5
g	2	0	-677	-728	-769	-802	-839	- 893	-951	-1018	-1106	- 1244	-1341	-1
g	2	1	2905	2928	2948	2956	2959	2969	2980	2984	2981	2990	2998	3
h	2	1	-1061	-1086	- 1128	-1191	- 1259	-1334	- 1424	-1520	-1614	-1702	-1810	-1
g	2	2	924	1041	1176	1309	1407	1471	1517	1550	1566	1578	1576	1
h	2	2	1121	1065	1000	917	823	728	644	586	528	477	381	
g	3	0	1022	1037	1058	1084	1111	1140	1172	1206	1240	1282	1297	1
g	3	1	-1469	- 1494	- 1524	- 1559	-1600	-1645	-1692	-1740	-1790	-1834	-1889	-1

What is IGRF?

- Construction of IGRF is a 5-yearly activity organised by IAGA
- Many more complex candidate models are merged (weighted average of Gauss coefficients): this is published as the IGRF

https://www.ngdc.noaa.gov/IAGA/vmod/index.html

International Geomagnetic Reference Field: the thirteenth generation, Alken et al. 2021

# 13th Generation International Geomagnetic Reference Field Schmidt semi-normalised sphe # in units nanoTesla for IGRF and definitive DGRF main-field models (degree n=1,8 nanoTesche schwarze)													sphe	
#	in	uni	its nand	oTesla †	for IGRF	= and de	efinitiv	/e DGRF	main-f	ield moo	dels (de	egree n≕	=1,8 nar	noT€
c,	∕s d	leg	ord IGF	RF IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	DGRF	DGRF	۵
g,	∕h n	m	1900.0	1905.0	1910.0	1915.0	1920.0	1925.0	1930.0	1935.0	1940.0	1945.0	1950.0	195
g	1	0	-31543	-31464	-31354	-31212	-31060	-30926	-30805	-30715	-30654	-30594	-30554	-30
g	1	1	-2298	- 2298	- 2297	-2306	-2317	-2318	-2316	-2306	- 2292	-2285	-2250	- 2
h	1	1	5922	5909	5898	5875	5845	5817	5808	5812	5821	5810	5815	5
g	2	0	-677	-728	-769	-802	-839	- 893	-951	-1018	-1106	-1244	-1341	- 1
g	2	1	2905	2928	2948	2956	2959	2969	2980	2984	2981	2990	2998	3
h	2	1	-1061	-1086	- 1128	-1191	- 1259	-1334	- 1424	-1520	-1614	-1702	-1810	-1
g	2	2	924	1041	1176	1309	1407	1471	1517	1550	1566	1578	1576	1
h	2	2	1121	1065	1000	917	823	728	644	586	528	477	381	
g	3	0	1022	1037	1058	1084	1111	1140	1172	1206	1240	1282	1297	1
g	3	1	-1469	- 1494	- 1524	- 1559	-1600	-1645	-1692	-1740	-1790	-1834	-1889	- 1

Beyond IGRF


• When is IGRF not enough?

e.g. probing ionospheric magnetic signals at LEO -> better to use more accurate internal field and magnetospheric model like CHAOS See magneticearth.org/pages/models.html

• Need a smoother pathway for people to understand when to move beyond IGRF, and how to do that

Wide & Varied User Base

- Data analysis/interpretation
- Numerical modelers
- Operational users NASA, NOAA, DoD, Commercial Entities
- Students

Uses in space physics

- Model evaluation (what is the main field at x,y,z?)
- Field line tracing
- Coordinate systems (e.g. AACGM, QD ...)
- Coupling to Tsyganenko models
- Interpreting magnetometer data
- Input into first-principal/empirical models
- .

Uses in geophysics

- Model evaluation (what is the main field at x,y,z?)
- Geomagnetic field modelling (power spectra, model comparison...)
- Correction processes in crustal and MT surveys
- ..

Thébault, E., Finlay, C. & Toh, H. Special issue "International Geomagnetic Reference Field—the twelfth generation". Earth Planet Sp 67, 158 (2015). https://doi.org/10.1186/s40623-015-0313-0

Many Existing Implementations

- IAGA traditionally publish an old Fortran code updated with the latest coefficients
- Many other implementations and web services exist
- IGRF coefficients are also used in other tools (e.g. AACGM, GEOPACK)
- Currently not an obvious choice which Python package to use
 - "International Geomagnetic Reference Field" - 7 repos
 - "IGRF" 45 repos

ernational geomagneti	c reieren //						
Repositories	7	7 repository results					
Code	12K						
Commits	12	space-physics/igrf International Geomagnetic Reference Field IGRF13 in Python and Matlab					
Issues	17	igrf matlab python fortran geomagnetic igrf12 matlab-python-interface igrf13					
Discussions Beta		숫 31 O Fortran MIT license Updated on Apr 26					
Code 12k Commits 12 Space-physics/igrf International Geomagnetic Reference Field IGRF13 in Python and Matlab Issues 10 igrf matlab python fortran geomagnetic igrf12 matlab-python-interface igrf13 \$\frac{1}{2}\$ \$1 Fortran							
Marketplace		Pure Python IGRF (International Geomagnetic Reference Field)					
Topics		☆ 2					
Wikis	10	- dmosloop <i>liant</i>					
Users		International Geomagnetic Reference Field					
Languages							
Fortran							
Python		generation					
Haskell							
R		International Geomagnetic Reference Field IGRF implementation in python					
Ivanced search Cheat	sheet						
		Python wrappers on the International Geomagnetic Reference Field 11&12 Fortran code					
		joshuaadampoirier/igrf_shinyapp Web application written using R's Shiny package to calculate the IGRF12 (International Geomagnetic Reference Field ht ☆1 ● R GPL-30 license Updated on Sep 20, 2016					

Tabulation of various packages: <u>https://github.com/ciaranbe/pyIGRF/issues/2</u>

Potential Requirements

- Ease of use
 - Simple pip install that works on all platforms immediately
 - Simple interface
- Performance
 - A pure Python implementation (using available tools in numpy/scipy) is slower
 - <u>eoxmagmod</u> from Swarm mission (C++ underneath) is fastest WIP to fix distribution & documentation (provides several models beyond IGRF)
- Features
 - Flexible forwards evaluation
 - Field line tracing (see e.g. <u>rstoneback/OMMBV</u>)
 - Geomagnetic field modelling toolbox (much already available in ChaosMagPy)
 - Select which version (year) of the model to use
- Maintainability
 - Clean code base
 - \circ \quad Well documented, both for users and developers
 - Avoid "scope creep" (adding many specialized features such that the package becomes large and/or fragile)
 - A guiding/parent organization to support development

Discussion Questions

- Is having many "python IGRFs" a problem?
- Can we as a community coordinate our efforts better?
- Who should be in charge of the "standard" python IGRF library?
- What features should the "standard" library have?
- How should this effort be organized/funded?
- How can this apply to other similar tools (IRI, MSIS, ect)?

Discussion Notes

- NGDC python package
- CCMC provides access
- Nice if IAGA is involved not strictly required
- CCMC web interface nice resource for the community, but many people want to be able run the model locally
- Coordinate solar community has gathered around sunpy, astropy, ect?
 - Do we want to try to take this approach? Organize the community around a single packages
- Centralized package dependencies issues
 - Can be problem for maintenance
 - Maybe all these large models can be collected at least
- NASA ML call produce something ML ready (machine learning)
 - Maybe helpful to have a funding opportunity like this
 - HDEE possible funding opportunity 1-2 years
 - White paper for decadal survey
 - Opportunity for our community to demonstrate the advantages of open source
- Pysat lets community be decentralized, but pysat connects everything Metapackage?
 - Let things easily talk to each other
- Software publication is important!!!
 - Publishing jupyter notebooks
 - JOSS