
 GitHub / git
Version Control

Marina Schmidt,
SuperDARN Canada, Usask

Outline
● Beginner level:

○ What is Version Control?
○ Creating a repository
○ Four holy commands in git
○ Workflow - branching out

● Intermediate level:
○ Pull it, Push it, Merge it, Rebase it
○ Proofread the code
○ Project management for collaborations
○ Templates

● Advanced level:
○ Sub-repo it!
○ Release the code!
○ Hooking up with GitHub

What is Version Control?

git SVN CVS

 Version control is a system that records changes to a file or set of files over time so that you can recall
specific versions later. For the examples in this book, you will use software source code as the files being
version controlled, though in reality you can do this with nearly any type of file on a computer. - git docs”

“

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

git it? got it? GitHub

git - Is a software tool to version control your code

GitHub - Is a web based graphical user interface (GUI) for git. It allows the git server to be hosted on
GitHub website server and add many additional features for smoother collaboration. Other web
based/hosting GUI’s for git include:

BitBucket GitLab

Getting Started - Read the README.md
Once you have a GitHub account you can create a repository on your own account or on an
organization's account. How you want to share the code and how many people are collaborating
on it will inform where you want to create it.

GitHub will ask questions to help create your repository, including adding these 3 types of
files:
1. README.md - README describes the repository and how one might use/install it.

(normally written in markdown ‘.md’)
2. LICENSE - licenses determines how users will interact, use, and modify your code.
3. .ignore - PLEASE INCLUDE! This will prevent any unwanted binary, data files, and

folders to be added to repository. In python this would be `pcy` or `__pycache__`. In
GitHub if you specify the language it will autocomplete the file for you

Choose a LICENSE!

https://choosealicense.com/

GPL - copyleft license
Permissions:

● Commercial use
● Distribution
● Modifications
● Patent use
● Private use

Conditions:
● Disclose source
● License and copyright notice
● Same license
● State changes

MIT - copyright license
Permissions:

● Permissive
● Distribution
● modifications
● Private use

Conditions:
● License and copyright notice

https://choosealicense.com/

Clone vs. Fork
 git clone git fork Adding to the current repo

Copying to your repo to make
your own changes and not
adding them to the original
repo

Beam me up git!

Remote means saving changes to the hosting server
like github. When you “git push” you are pushing
changes to the shared repository server.

Local means saving changes on your own computer.
When you “git commit -m” you are saving the
changes in your local git history. No one else can see
these changes.

4 Holy git commands

git status

git pull

git commit
git push

git pull - update any changes others have made
(this includes yourself)

git status - check which files you have changed

git commit - commit changes to your local git
history and leave a update your local repo to
include informative message. Avoid -m if possible
to ensure detailed messages

git push - push changes to the remote git
repository

Holy git Commands in Action!
$ git status
On branch plot/ACF
Your branch is up to date with 'origin/plot/ACF'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

modified: acf.py
$ git add acf.py
$ git commit -m “fixed the typo in the other name”
$ git push origin plot/ACF
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
...

Branching Out

git fetch Obtains the most recent changes to branches, including new
branches from the remote server

git checkout
To checkout a branch. This command will switch branches and
upload any changes made in that branch if git fetch is done
beforehand. The -b option allows you to create a new branch
based on the current one you are on.

git branch Lets you know which branch you are on and available branches.
This command is useful to use before “git checkout -b <new branch
name>

Branching Out Example
$ git branch
 bug/rawacf_updates
 develop
 master
* plotting/fan
$ git fetch
remote: Enumerating objects: 231, done.
remote: Counting objects: 100% (218/218), done.
remote: Compressing objects: 100% (66/66), done.
remote: Total 184 (delta 115), reused 157 (delta 94), pack-reused 0
Receiving objects: 100% (184/184), 438.21 KiB | 2.29 MiB/s, done.
Resolving deltas: 100% (115/115), completed with 23 local objects.
From https://github.com/superdarn/pydarn
 c61e06d..6b31454 develop -> origin/develop
$ git checkout plot/ACF
Branch 'plot/ACF' set up to track remote branch 'plot/ACF' from 'origin'.
Switched to a new branch 'plot/ACF'

Branching Out
Master branch is the main branch where a
release will be or the most stable branch you
currently have for others to use.

Develop branch is the secondary branch in
which new unstable features can be added
and be well-tested before merging to
main/master for a release.

Feature branch is a third branch, used for
new and potentially unstable features. It
branches off develop and makes changes to
then be merged in

Why Not Stick to Master?

Benefits of branching:
● Keeping branch changes small

allows very better debugging and
review

● Keeps dangerous buggy code from
being used by users

● Keeps things organized
● Has a nice workflow with github and

Pull Requests

How to get organised with branches?
● Create a branch based on one goal or part of

a goal
● Once completed, create many smaller

branches off of it for other tasks to be
completed

● Create a Pull Request in GitHub to merge your
branch(s) into develop or other branches.

● Pull Requests allow you to see changes you
made between files as well as have the nice
capability of reviewing your code

Pull it, Push it, Merge it, Rebase it

git push

git pull
Pull on your own branch only this will update any changes. Avoid
pulling from another branch to a different branch as this will
overwrite changes to your files.

Is to save your commits to the remote server. You should
pull before to ensure you have the most recent branch edits.

git merge

git rebase

To bring changes from another branch or to push changes from
your branch to another use merge. This will avoid overwriting
any changes.

To clean up and choose git commit history. This helps with
conflict history commits or meaningless commit messages that
you made but ended overwriting. Ideally good to use after a
merge. GitHub support merge and rebase when you create a
Pull Request.

Proof Reading the Code - Code Review
Code Reviews - are essentially allowing someone or yourself to proof read the changes you have
made. This helps with consistency, potential error, good documentation/commenting, and feedback.

Do you need to
be a good
programmer to
code review?

No, good code should be well descriptive and
commented to allow the reviewer knowing what is
going on

Do I need to
know how to
program in
that
language?

No, sometimes scientist are better because
they can ensure the science is done right.
Plus by reading others code it will help you
learn to code better to.

GitHub and Code Reviews
GitHub allows a nice graphical interface and nice features to code review so that anyone can do it:

1. Open a PR on GitHub
2. Select “files changed”, top left corner
3. Look at code changes highlighted in green (added) and red (removed)
4. Once you have a comment for a line slide your mouse curse to the line number and blue

“+” will appear and click on it
5. Leave a comment in a box, you can also suggest a change via:

```suggestion
<change>
```

6. Click start review to avoid spamming them with emails
7. Once you are done go to the top right and select “Finish your review”
8. Add any extra comments about the review and select what is required from these changes:

a. Comment
b. Approve
c. Request Changes - this will prevent the developer/users to merge the code until you

approve the changes

Project Management
Labels - In GitHub you can label issues and pull requests this is to help organize issues and pull requests in categories for
a user/developer to pick up. You can also create your own labels.

Projects - GitHub on the main tab list next to Actions is projects which allows a user to generate a workflow for given
tasks/goals. Once you create one you will be able to select a template - recommend Automated KanBan.

Kanban - is developer style of organizing the process/workflow of tasks via these categories:
● TODO - List tasks and notes of things to be done for this project, this can include issues
● In Progress - Once a task or issue is picked up and worked on it goes to in progress. Typically pull requests will

be here.
● In Review - once a pull request is created and reviewed/tested it will end up here
● Done - the pull request is merged and the issue is closed.

Please note projects do not include deadlines and they can be endless lists/tasks as they focus on an idea.

Milestones - Are like projects but created with deadlines and have no templates associated to them. To create a
milestone go to the pull request tab then click Milestones next to New pull request. Milestones are good for code
release or features that have a deadline. Once you created a Milestone you can add pull requests
and issues to it. The Milestone will show the status of how many tasks are open and closed, and
a status bar of completion.

Templates
Templates - are forms you can create for issues
and pull requests to ensure users place the
correct information in for given categories like:

● New Features
● Bug
● Documentation

To create a template:
1. create a .github folder in your main

repository directory
2. create sub-folders in .github named:

a. “ISSUE_TEMPLATE” and
b. “PULL_REQUEST_TEMPLATE”

3. In either of the sub-folders start creating
markdown files (.md) for a template

Git Inception
git sub-repo is a repository that is used in another repository. That advantage of using sub-repos is:

● Modularize
● Keep commits separate between packages
● Decoupling

HOW to do it:
1. Have 2 seperate repositories
2. In your working repository you would like to add the other repo:

3. To update the sub-repo:

4. Bonus! add these commands to setup.py, your sub-repo downloads on install

git submodule add <other repo url link>

git submodule update --init --recursive

git submodule update --remote --recursive

Release the Code!
1. Go to the main page of the repository
2. Click on releases to the top right of the page
3. Click Draft a new release
4. Type the next version number of your code: major.minor.pathch:

a. Major: large changes to the code base like structural changes
b. Minor: additive feature or deprecations to the code
c. Patch: bug fixes, minor small changes and updating some code

5. Select the target branch, typically main also known as master
6. Then give details on your release:

a. Title - typically release version number
b. Details - typically what changes, fixes, documentation, and deprecations have been made

7. You can add pre-compiled code to your release but python usually does use this feature
8. You can select pre-release if you still need to test the code to ensure stability
9. Click Publish Release!

Hooking up to the web - Webhooks/Integrations

Readthedocs -
hosting platform
for building,
versioning, and
documentation

DOI’s and hosting
platform for data
and software for
citing in publications

Multi user chatting
app

Thank You!

Helpful Links
Create Repo on GitHub:
https://help.github.com/en/enterprise/2.17/user/github/creating-cloning-and-archiving-repositories/creating-a-ne
w-repository
Choose A License:
https://choosealicense.com/
Code Review in GitHub:
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-reviews
Merge vs. Rebase:
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
Releasing code:
https://help.github.com/en/enterprise/2.13/user/articles/creating-releases
SSH-key gen for GitHub for faster pushes:
https://help.github.com/en/enterprise/2.17/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-git
hub-account

https://help.github.com/en/enterprise/2.17/user/github/creating-cloning-and-archiving-repositories/creating-a-new-repository
https://help.github.com/en/enterprise/2.17/user/github/creating-cloning-and-archiving-repositories/creating-a-new-repository
https://choosealicense.com/
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-reviews
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://help.github.com/en/enterprise/2.13/user/articles/creating-releases
https://help.github.com/en/enterprise/2.17/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://help.github.com/en/enterprise/2.17/user/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account

