Developments in Spacecraft Charge Neutralization During Active Charged Particle Emission

Grant Miars¹ Gian Luca Delzanno², Brian Gilchrist¹, Omar Leon¹

The University of Michigan, Ann Arbor, MI, USA
 Los Alamos National Laboratory, Los Alamos, NM, USA

Beam-Induced Spacecraft Charging

$$\Sigma I_k = 0$$

- Beam emission perturbs satellite charge equilibrium
 - Other currents respond to maintain zero net current
- Largest balancing current term in LEO is electron current collected from the ambient plasma

L. W. Parker, B. L. Murphy, Potential Buildup on an Electron-Emitting Ionospheric Satellite, JGR, 1967.

The Need for Charge Mitigation

- Low plasma densities (~1 cm⁻³) are insufficient to balance even 1 mA average beam current
- Beam pulled back electrostatically as spacecraft body charges positive
- Beam return can damage the spacecraft (failure of 3 payloads on SCATHA)

G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, E.A. MacDonald, *Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?*, Journal of Geophysical Research, 120 (5), 3647 (2015)

The CONNEX Mission Concept

- Magnetosphere-Ionosphere Connections Explorer
- Establish connectivity by tracing the Earth's magnetic field in real time using an electron beam
- Addresses longstanding questions on coupling between ionosphere and magnetosphere
- Example: What drives the aurora?

F. Lucco Castello, G.L. Delzanno, J.E. Borovsky, G. Miars, O. Leon, B. E. Gilchrist, *Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft*, ICOPS, 2017.

The Ion Emission Model

• Net ion current is emitted from surface of a contactor plasma

- This current is able to balance electron emission without inducing significant spacecraft charging.
- Analytical model of ion emission successfully

Ion Emission Model Validation Experiments

Can we use vacuum chamber measurements to validate the ion emission model?

The B-SPICE Mission Concept

WFF

RCS

ACS

EPS

WFF-CDH

TM

- The Beam-Spacecraft Plasma Interaction and Charging Experiment
- Sounding rocket mission proposal resubmitted in the Fall
- Focus on validating the ion emission model in space
 - Technology demonstration mission
 - Validates modeling framework

8

A Novel Spacecraft Potential Diagnostic

- Low cost
 - Can be board-mounted internally
- Easy to Use
 - Does not require complex/expert analysis
- Unlocks new measurement speeds
 - 100+ kHz sampling rate
- Unlocks new science capabilities
 - And other new capabilities...

gmiars@umich.edu

The B-SPICE Mission Concept

Specific Mission	Objectives
------------------	------------

Objective 1: Determine most efficient plasma contactor operating regime for spacecraft-charging mitigation.

Objective 2: Determine scaling law for spacecraft potential versus beam/contactor current.

Objective 3: Determine scaling law for spacecraft potential versus contactor expansion time.

Objective 4: Determine scaling law for spacecraft potential versus contactor expellant utilization.

Science Measure	Instrument		
Physical Parameters	Observables	motrament	
Local Plasma Conditions	Plasma Density, Temperature	Langmuir Probe (LP)	
Conditions on Spacecraft	Spacecraft Potential, Collected Current	Tether Deployer & Voltage Monitor (TDVM)	
Electron Beam Conditions	Emitted Beam Current	Electron Beam Assembly (EBA)	
Beam Interactions (Atmos. & Plume)	Beam-Gas Optical Emission	Photometers (PM)	
Hollow Cathode Conditions	Keeper & RAA Potentials/ Currents	Hollow Cathode Plasma Contactor (HCPC)	
	Net Ion Emission Current		

The B-SPICE Mission Concept

CPIC as a Plasma Physics Tool

- Curvilinear Particle-In-Cell
- Kinetic plasma modelling (PIC)
- Adaptive computational grid conforms to arbitrary shapes
- Designed for multiscale problems and complex objects

A Brief History of Electron Beams in Space

- Numerous sounding rocket and LEO spacecraft have featured electron beams
- A useful tool for studying space plasmas and plasma physics

• Significantly fewer magnetospheric spacecraft (SCATHA is one example)

Artificial Particle Beams in Space Plasma Studies

688 pages 1982

Edited by Bjørn Grandal

Analytical Model of Ion Emission

Analytical model of ion emission successfully developed using space charge limit:

I^{emit} = I^{SCL} (plasma potential, plasma geometry, ion drift velocity)

F. Lucco Castello, G.L. Delzanno, J.E. Borovsky, G. Miars, O. Leon, B. E. Gilchrist, Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple Theoretical model for the interpretation of the transient of the spacecraft potential, JGR, 2018.

Mimicking Space and Producing Plasma

- Ambient space potential = Chamber wall potential
- Spacecraft potential = Hollow cathode potential
- Electron beam current = Power supply in constant current mode
- Hollow cathode biased positive w.r.t. chamber wall to emit ions

Analytical Ion Emission Model Predictions

 Multiple possible solutions depending on which plasma potential points are picked as constraints

• Solutions match measured ion emission closely

 TABLE V. COMPARISON OF MEASURED EMISSION CURRENT AND

 ION EMISSION MODEL PREDICTION USING THE POTENTIAL POINT

 SELECTION TECHNIQUE AT A CATHODE POTENTIAL OF 30V

4	Position	Measured Emission Current (nA)	Fit Used	Emission Current Prediction Range (nA)	Average Emission Current Prediction (nA)	% Error
	1	90	None	534-617	572	540%
6	2	560	None	550-602	582	3.9%
	3	330	None	326-353	342	3.6%
	4	310	Exponential	267-289	282	9.0%
	5	200	Exponential	177-201	189	5.8%
	6	140	Exponential	243-271	256	83%

Vacuum Facilities

Junior Test Facility Test Facility Cathode Test Facility

ElectroDynamic Applications Chamber

