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Motivation
Forecast of Geomagnetically Induced Currents (GICs)

Gannon [EEonline, 2016]

§ Worldwide/Nationwide GIC data are not available 
§ Our study focuses on large geomagnetic field disturbances, a trigger of GICs.



Recurrent Neural Network (RNN)
for predicting geomagnetic field disturbance (dB/dt)

§DATA: 
§ OMNI solar wind and IMF conditions in 2012 and 2015
§ SuperMAG surface & vertical disturbances (i.e., dBs/dt & dBz/dt) in 2012 and 
2015
§ 80% for training, 20% for validation to determine the best input combination, 
and the 2012-03-09 storm for testing

§Method: Multi-variate Long Short Term Memory (LSTM) network
§50 neurons in a single hidden layer, 50 epochs with a batch size of 72
§Adam’s stochastic gradient decent as an optimization algorithm
§Mean absolute error as a loss function

§Two machines are trained for dBs/dt and dBz/dt predictions.
§Input: IMF Bz, Solar Wind Density, dBs/dt (or dBz/dt) at a present minute (t-1)
§Output: dBs/dt (or dBz/dt) at the next minute (t)



SuperMAG Data Binning

§ To provide an even spatial resolution, we binned SuperMAG data into 10° MLAT x 
1hr MLT grids and select max dBs/dt and max dBz/dta in each bin as our dataset.

§ We consider 100nT/min as a minimum dB/dt that triggers GICs.



Model Results over  
the Nightside Northern Hemisphere

Our machine-learned predictions (right) show a good agreement with the binned 
SuperMAG data (left) on a larger spatial scale
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Model Results over 
the Nightside Northern Hemisphere

Considering ± 30nT/min of RMSE, our machine may miss or falsely predict 
~100nT/min of geomagnetic disturbance.

However, it won’t be troublesome to forecast several hundreds nT/min that 
potentially produces a catastrophic GIC event.

RMSE for dBs/dt RMSE for dBz/dt
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Improvement needed in future
§ Train machines with longer periods of data.

§ Use a longer time history of input (e.g. 60 mins of SW/IMF data).

§ Remove dBs/dt and dBz/dt from the input.
§ Our current model may find stronger correlation with dB/dt at t-1min.

§ Consider sophisticated solar wind propagation from the bow shock to each bins.
§ 60min delay from the bow shock to the nightside bins were assumed.

§ Consider finer spatial resolution for higher latitude

§ Use better validation techniques than RMSE [Welling et al. SW2018; Maimaiti et 
al. SW2019; Camporeale. JGR 2020]

§ Use different machine learning techniques
§ Multi-layered LSTM, Artificial Neural Network, Convolutional Neural 

Network, Principal Component Analysis, etc.



Summary
§ We developed a prototype of a machine-learned global dB/dt model 

using multi-variate LSTM.

§ We trained a machine using the OMNI solar wind/IMF data and the 
SuperMAG data in 2012 and 2015. 

§ The prototype model catches over 100nT/min of dB/dt relatively well 
on 09 Mar 2012 geomagnetic storm.

§ Once matured, this model can provide an advanced warning of 
Geomagnetically induced currents (GIC) that typically comes with 
large dB/dt.

This work is supported by NSF EPSCoR Grant #1920965.



What did I learn as a ML beginner?

§ I feel dumb.  Many mistakes.

§ Machine-learning is not a magic, but a good tool if we use it well.

§ The users’ view on how to use data and what to predict is important.
§ Data binning, mining, etc.
§ Binary (yes/no) and value predictions

§ Machine-learned models can be a good alternative of current empirical models 
(Weimer, Tsyganenko, Ovation-PRMIE, etc) in future.



Thank you!



Model Results
dBs/dt vs time at 5 local bins
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The machine-learned dBs/dt prediction 
at five local bins (red) follows a general 
trend of the binned SuperMAG data 
(black).

The RMSE ranges 17 – 21 nT/min, 
relatively smaller than 100 nT/min, 
minimum dB/dt of our interest (i.e., 
minimum dB/dt for GICs)


