Interhemispheric Dynamos and Poynting Flux

Stephan C. Buchert, Swedish Institute of Space Physics

CEDAR 2020 Workshop: Poynting Flux

June 25, 2020

Rosenqvist et al., 2006

- I/the audience? perhaps understand Joule/frictional heating at high latitudes:
- 1. the plasma in space, above the ionosphere, needs to move/convect:
- 2. causes are magnetosheath flow, magnetic reconnection, pressure gradients, ...
- 3. the plasma short-cuts $E_{\parallel} \neq 0$ (electric potential non-const along \vec{B});
- 4. in the ionosphere this forces the plasma to move relative to the neutral gas, causing
- 5. \rightarrow frictional heating,

6.
$$ightarrow -
abla \cdot ec{S} = ec{E}_{\perp} imes \delta ec{B} / \mu_0 = ec{J} \cdot ec{E} > 0$$
,

7. i.e. EM power is dissipated.

But how does a neutral dynamo (e.g. at mid-latitudes) work?

according to Ohm's law:

- ▶ if in the reference frame of the neutral gas $\vec{E}^* \neq 0$, then $\vec{J} \cdot \vec{E}^* > 0$;
- for a dynamo $\vec{J} \cdot \vec{E} < 0$ is needed!
- ▶ Hmm, textbooks/articles state that in another reference frame there is a neutral wind $\vec{u} \neq 0$ and possibly $\vec{J} \cdot \vec{E} = \vec{J} \cdot (\vec{E}^* + \vec{u} \times \vec{B}) < 0$?
- but the choice of the describing reference frame should not effect processes in the thermosphere?
- and which reference frame (Earth, sun-aligned, star-aligned, ...) would be the correct one?

Answer:

 $\blacktriangleright \vec{E}^*$, $\vec{E}^* \times \vec{B}$ only in the frame of the neutral gas are relevant!

But the neutral gas can define many different reference frames...

The most simple scenario considers zonal winds at conjugate points

(assuming a thin ionosphere, perfectly centered dipole \vec{B} , no meridional winds, ...)

For u_N ≠ u_S ū × B does not map between N and S!
 → the plasma has to move relative to the neutral gas,
 equivalently E^{*} ≠ 0 in the neutral gas frames!

• the condition $E_{\parallel} = 0$ translates to

$$\vec{E}^{*}(z) + \vec{u}(z) \times \vec{B}(z) = const$$
(1)

z a field-aligned coordinate, or

$$E_N^* = E_S^* + \Delta u B, \text{ with } \Delta u = u_N - u_S \tag{2}$$

for the non-mapping zonal winds.

• $\nabla \cdot \vec{j} = 0$ and Ohm's law give the 2nd condition:

$$\int \vec{j}_{\perp}(z) dz = \int \sigma_P(z) \vec{E}^*(z) dz = 0$$
(3)

or

$$\Sigma_N E_N^* + \Sigma_S E_S^* = 0 \tag{4}$$

with $\Sigma_{N,S}$ the Pedersen conductances in N and S.

the solutions of (2) and (4) are:

$$E_{S}^{*} = -\frac{\Sigma_{N}}{\Sigma_{N} + \Sigma_{S}} \Delta u B = -\frac{\Sigma_{N}}{\Sigma_{S}} E_{N}^{*}$$
(5)

and

$$J = \frac{\Sigma_N \Sigma_S}{\Sigma_N + \Sigma_S} \Delta u B \tag{6}$$

pse see also the open discussion of https://angeo.copernicus.org/preprints/ angeo-2019-71/#discussion.

Same scena, different reference frames

Reference frame neutral gas at N:

Reference frame neutral gas at S:

Same scene, different reference frames

Reference neutral gas at N:

► at N:

► JH (of course)

$$Q_N = \Sigma_N \left(\frac{\Sigma_S}{\Sigma_N + \Sigma_S} \Delta u B \right)^2$$

• Poynting flux $E \times \delta B = E_N \times \delta B$ is into the ionosphere!

▶ at S:

 J · E = J · (E_S − ΔuB) = -Q_N < 0, dynamo!
 E × B = (E_S − ΔuB) × B is out of the ionosphere! Reference neutral gas at S:

► at N:

• $J \cdot E = J \cdot (E_N - \Delta uB) =$ $-Q_S < 0$, dynamo! • $E \times B = (E_N - \Delta uB) \times B$

is out of the ionosphere!

▶ at *S*:

► JH (of course)

$$Q_{S} = \Sigma_{N} \left(\frac{\Sigma_{S}}{\Sigma_{N} + \Sigma_{S}} \Delta u B \right)^{2}$$

• Poynting flux $E \times \delta B = E_S \times \delta B$ is into the ionosphere! by switching between different reference frames we can see that

► JH takes place at N;

the corresponding dynamo is at S,

▶ with Poynting flux out of *S* and into *N*.

and

- JH takes place at S;
- the corresponding dynamo is at N,
- ▶ with Poynting flux out of *N* and into *S*.
- for reference frames other than the neutral gas in either N or $S \ J \cdot E$ and $E \times B/\mu_0$ have arbitrary values/directions,
- ► I cannot see the physical meaning of $J \cdot E$ and $E \times B/\mu_0$ for such frames.

Generalization and Conclusions

By ESA/Hubble, CC BY 4.0,

https:

//commons.wikimedia.org/w/

index.php?curid=57888670

- only a non-constant $\vec{u}(z) \times \vec{B}(z)$, z field-aligned has a dynamo effect;
- a wind field can have a complicated structure, vortices, etc.
- if, for a dipolar centered B
 , the wind field is mirror-symmetric with respect to the magnetic equator, there is no EM dynamo;
- the interhemispheric "entangled" dynamos and j × B forces act to establish such mirror symmetry;
- the Earth's Sq variations are basically explained by this process;
- the mirror symmetry is practically never achieved, mainly because of the angular misalignment between magnetic dipole and rotation axes.

Conclusions regarding Poynting flux

- Poynting flux is commonly defined in plasma, geo- and space physics including the "motional field" v × B;
- it is therefore a frame dependent vector;
- on closed field-lines the neutral gases at both conjugate points are meaningful reference frames;
- use of other reference frames (incl. Earth-fixed) have an unclear physical meaning;