Intro to VRE

Ashley Smith (PDRA, Uni of Edinburgh, UK) ashley.smith@ed.ac.uk

Virtual Research Environment (VRE) for Swarm

What is it?

Free-to-use Jupyter environment in the cloud to easily access Swarm products

Extension of VirES (GUI)

vires.services

vre.vires.services

File Edit

LICENSE

(:) notebooks ison

M README.md

Name 0

Aims of VRE: improve accessibility of Swarm

- Reduce IT skills necessary to just get started
- Easier navigation of & access to Swarm products

MY PYTHON ENVIRONMENT HAS BECOME. SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE. Level 2 Products

Core Field

or<u>MCO_SHA_2C_orMCO_SHA_2D_orMCO_VAL_2C_orMCO_VAL_2D_orMCO_VAL_2</u> or<u>MCO_SHA_2F_orMCO_SHA_2X</u>

- Lithospheric Field
 MLI_SHA_2C_PMLI_SHA_2D_PMLI_SHA_2E_PMLI_VAL_2C_PMLI_VAL_2D
 PMLI_VAL_2
- <u>Mantle Conductivity</u>
 <u>mMIN 1DM 2 mMCR 1DM 2 mMII VAL 2 mMC1 VAL 2</u>
- External Current Systems
- orMMA
 SHA
 2C
 orMMA
 VAL
 2C
 orMMA
 SHA
 2F
 orMIO
 SHA
 2C
 orMIO
 SHA
 2D
 orMIO
 VAL
 2
 orIBIXTMS
 2F
 orTECXTMS
 2F

 orFAC
 TMS
 2F
 orFACXTMS
 2F
 orEEFXTMS
 2F
 orIPDXIRR
 2F
 orMIO
 SHA
 2E

 orIBP
 CLI
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

VirES (virtual workspaces for Earth observation scientists)

viresclient.readthedocs.io

viresclient

Access to **time series** of (most of) the Swarm products as pandas/xarray

Choose any time interval, add custom **subsampling** and **filtering** (subselection)

Geomagnetic models and other parameters **evaluated on-the-fly** on the server

```
from viresclient import SwarmRequest
request = SwarmRequest()
request.set collection("SW OPER MAGA LR 1B")
request.set products(
    measurements=["B NEC"],
    models=["CHAOS-Core"],
    residuals=True.
    auxiliaries=["MLT", "QDLat", "SunZenithAngle"])
data = request.get between("2019-01-01", "2019-01-02")
ds = data.as xarray()
ds
                                      Elapsed: 00:05, Remaining: 00:00 ]
[1/1] Processing: 100%
      Downloading: 100%
                                      Elapsed: 00:00, Remaining: 00:00 ] (7.004MB)
<xarray.Dataset>
Dimensions:
                           (NEC: 3, Timestamp: 86400)
Coordinates:
                           (Timestamp) datetime64[ns] 2019-01-01 ... 2019-01-01T23:59:59
  * Timestamp
  * NEC
                           (NEC) <U1 'N' 'E' 'C'
Data variables:
                           (Timestamp) object 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A'
    Spacecraft
                           (Timestamp) float64 14.82 14.82 14.82 ... 2.445 2.445
    MI T
    Radius
                           (Timestamp) float64 6.819e+06 6.819e+06 ... 6.809e+06
    ODI at
                           (Timestamp) float64 -13.94 -13.88 ... 39.74 39.67
    SunZenithAngle
                           (Timestamp) float64 40 87 40.89 40.91 ... 141.1 141.2
                           (Timestamp, NEC
                                                      13,44 -18.83 ... 4,656 7.37
    B NEC res CHAOS-Core
    Latitude
                           (Timestamp) fl
                                                       -16.97 -16.9 ... 44.0 43.93
    Longitude
                           (Timestamp) fl
                                                       -186.0 ... 40.88 40
Attributes:
                      ['SW OPER MAGA LR ]
                                                             019010
    Sources:
    MagneticModels:
                     ["CHAOS-Core = 'CHA
                                                              =20,min degree=
    RangeFilters:
                      Γ1
```

Information Architecture

Challenges & opportunities for software-based scientific research and services

Other Jupyter-y examples

Plans

- viresclient:
 - Integration with PyHC and other communities
 - Pre-configured quicklook visualizations
 - Make it easy to cite/acknowledge software and data correctly
- Notebooks (as a cookbook):
 - Need to improve content; want to stimulate more community involvement
- Access to new products:
 - Auroral electrojet and oval boundaries (AEJ_LPL, AEJ_LPS, AEJ_PBL, AEJ_PBS, AOB_FAC)
 - Ground Observatories (INTERMAGNET) & Virtual Observatories
- VRE software stack:
 - Improve portability (instructions for recreating similar environment)
 - Add more packages!
- New services:
 - E.g. "live" plots at <u>magneticearth.org/pages/quicklooks</u>

- Stimulate collaboration
 - Development of packages
 - Sharing of notebooks
- Encourage best practices

Some talking points

- Looking for an easier way to share notebooks
 - Email: bad (awkward to comment, update etc.)
 - Github: hard (need to learn git)
 - Hub? E.g. https://exploratory.openhumans.org/
- What do you want to do with Swarm?
- Swarm-DISC is looking for new ideas for tools/services

Come talk to me! ashley.smith@ed.ac.uk

Service:vires.servicesInfo & guide:swarm-vre.readthedocs.ioPython package:viresclient.readthedocs.io

Weekly online open office hours, check: <u>smithara.github.io</u>

Links

Service:vires.servicesInfo & guide:swarm-vre.readthedocs.ioPython package:viresclient.readthedocs.io

- Main GitHub repos [responsibility]:
 - [EOX] VirES Server github.com/ESA-VirES/VirES-Server
 - [EOX] VirES Web GUI github.com/ESA-VirES/WebClient-Framework
 - [EOX] eoxmagmod github.com/ESA-VirES/MagneticModel
 - [AS / EOX] viresclient <u>github.com/ESA-VirES/VirES-Python-Client</u>
 - [EOX] (VRE config currently hidden aim to make useful docker file public?)
 - [AS / DISC] Swarm notebooks <u>github.com/Swarm-DISC/Swarm_notebooks</u>
 - [AS] VRE user documentation <u>github.com/ESA-VirES/Swarm-VRE</u>
- Friendly introduction to geomagnetism: magneticearth.org
- CI for notebooks: treebeard.io (beta)

AS: ashley.smith@ed.ac.uk

Notebook development & community connections

Current notebooks

- Browse them at https://swarm-vre.readthedocs.io/
 - Easy one-click to run on VRE
- Main collection "Swarm_notebooks"
 - To be updated and maintained as a cookbook
 - Talk to me to augment it with your own examples
- Publish your own collections on GitHub
- [Demo one of the NBs and JLab, then 10 mins for people to have a go?]

Target audiences

(Python) programming expertise Target user for "illustrative notebook" Target user for "basic geophysics notebook" Non-VRE user Target user for (-> VIRES) "scientific notebook"

geophysical ("scientific") expertise

Targeted notebook themes

geophysical ("scientific") expertise

Themed collections in <u>GitHub/Swarm-DISC/Swarm_notebooks</u>

Illustrative

Scientific

	First notebook name of each theme	Description
/	01aIntro-Jupyter-Python	Generic Python guide
(02aIntro-Swarm-viresclient	Guide to VirES concepts & related libs
	03aProduct-Demo-MAG	Demo access to each Swarm product
	04aMagnetic-Models	Geomagnetic Models
(05a	lonosphere

Documentation sites

swarm-vre.readthedocs.io

* Swarm VRE	Docs » Swarm Notebooks Ove
	Swarm Noteboo
Search docs	Warning
> [Launch VRE]	In development
> [viresclient docs]	0 Note
VRE INFORMATION: Introduction Getting help About Jupyter	The following pages are gene DISC/Swarm_notebooks They can be explored interact
Software available System specification Collaborating	Launch on VRE!
Notebook development	
Swarm Notebooks Overview	Notebook catalogu

viresclient.readthedocs.io

Coordination through GitHub

Swarm-DISC / Swarm_notebooks
<> Code (1) Issues 0 (1) Pull requests 0
lotebooks demonstrating access to Swarm o
T 13 commits 2 branches
Branch: master - New pull request
smithara Execute notebooks
🖹 .gitignore
01a_Intro-Jupyter-Python.ipynb
02a_Intro-Swarm-viresclient.ipynb
02b_viresclient-Available-Data.ipynb
02z1Template-Basic.ipynb

Run NBs

View NBs and guidance

Expose Swarm products and usage

Coordination through GitHub - Orgs & Packages

DISC Swarm-DISC	● Earth ⊕ htt
Packages	Repositories 3 Pace
Find a repository	
Swarm_notebooks	MagneticEarth_notebo Jupyter notebooks of general geom Jupyter Notebook ∯ MIT ♀ 0
Notebooks demonstrating access to Swarm de deployed on the VRE.	MagneticEarth.github.
	geophysics space-physics sp ● HTML ♀ 0 ★1 ④ 0 ♡0
SwarmPyFAC A package for calculation Field Aligned Curren	
● Python 😵 1 ★ 1 ① 0 🕅 0 Updatec	Materials for the workshop on mag geomagnetism laga
	● Jupyter Notebook វ≸ MIT 😵 0

MagneticEarth	ancklo / ChaosMag	Ру
Earth Chttp://magneticearth.github.io	<> Code (!) Issues (1)	ຖາ Pull requests 0
3 👕 Packages 💄 People 1 🞽	ChaosMagPy is a simple	python package for
	327 commits	រ្វ រ 3 branches
h_notebooks f general geomagnetic interest nୁt MIT ଝି୦ ★୦ ହି୦ ହିୀ୦ Updated	Branch: master - New pul	l request
h.github.io ut geomagnetism	ancklo Rephrased citation	suggestion.
e-physics space-weather geomagnetism	chaosmagpy	Fixed bug in ze
1 ① 0 ႞႞ 0 Updated 24 days ago	docs	Fixed bug in ze
erSchool2019	tests	Fixed bug in ze
kshop on magnetic observatories and modelli	igitignore	Restructured d
ga a∯ MIT ೪0 ★6 ①0 १९0 Updated		Fixed bug in ze

Coordination through GitHub - Deploy NBs

Custom kernel required to fix package versions

Coordination through GitHub - Other Projects?

	Fatia	ando a Terra		
	Open-	source Python too	ls for geop	hysics
	ං http	s://www.fatiando.org	Verified	
E Repositories	s 27	🗇 Packages	🤱 Peop	le 8
Pinned reposito	ries			
📮 verde				📮 po
Processing and gr functions	ridding sp	patial data using Gree	en's	A frien
Python ★ 1	64 %	26		Pyt
📮 harmonica				📮 ro
Forward modeling and magnetic data	i, inversio a	on, and processing gr	avity	Downl them i
🔵 Python 🛛 🛧 3	2 ¥1	5		Pyt

Heli	ioPy	
Repositories 2	Packages	*
Find a repository		
heliopy Python for heliospheric a	and planetary phys	ics
python physics sp	ace-physics	
Python 🖧 GPL-3.0	¥36 ★34 🤅	14

E Repositories 4	👚 Packages	2 People	III Pro
Find a repository			
Find a repository MARTAS Magpys Automated Rea	I Time Acquisition	System	
Find a repository MARTAS Magpys Automated Rea Python & GPL-3.0	I Time Acquisition ೪₀ ★1 ⊕7	System ເງິງເວັບpda	ited 10 day

Virtual Research Environment For Swarm

Moving to cloud systems

Developing your own notebooks

Developing a notebook

Intro template & written guidelines at

https://swarm-vre.readthedocs.io/en/latest/notebook_development.html

Live demo. Demo some pitfalls and how to make NB cleaner

Sharing notebooks

Review options

VRE as a research tool

Challenges for science with Swarm

- Constantly improving and evolving portfolio of data and models (collectively "products"):
 - Bewildering array of products
 - Products with changing version numbers
 - Different "choices" of products possible (geomagnetic field models; FAC algorithms etc.) and newer ones developed
- Complexity of the science:
 - Intersection of geo- and space- physics
 - Necessity to support different user groups and help communication between them

Swarm products and communities

Geomagnetic field modelling [Geophysics] Models of the near-Earth magnetic field

ð dsourc Ø E des Ø õ org gneticea Ja

Why VRE?

- Centralise IT effort and reduce skills necessary for scientists
 - Managed Python environment with aim to cover "most of" Swarm science
- Provide access to all, lowering barrier for entry
- Provide an identical environment to all to help coordination
- Benefits of cloud service
 - Elastic provision of resources to a large user base
 - Proximity to other cloud services for performance
- Difficulties
 - Free service means available compute power is limited
 - Tied to Jupyter ecosystem and concept
 - Evolving software stack breaks reproducibility

VRE aspects

- Infrastructure & support
 - A place to run code; Anyone can log in and use it
- Software stack
 - Provides integration with VirES for Swarm data access (viresclient)
 - Everyone is running the same software environment
 - Solves the "it worked on *my* machine..." problem
 - Stimulate a community of Swarm-related software that is inter-operable
 - The software is all *portable* and can be redeployed elsewhere
 - E.g. on your individual computer or on your institution's systems
 But requires some knowledge + effort on your part
- Notebooks
 - Resource to learn/teach/share *science*

VRE limitations (& solutions?)

- Limited computational power
 - Potential to extend through dask+kubernetes (see Pangeo concept)
 - Costs a lot more; problems of managing usage
 - Needs more community s/w development & education to be useful
- Limited storage space
 - Raise it on per-user requests
 - Support connectivity with other services
- Less freedom to install/run other software
 - Can be expanded over time according to user demand (a clear pathway for this is needed)
 - Inevitably limited to what fits in the Jupyter paradigm
- Other difficulties related to the cloud nature and in-browser interaction

Sustainable software + notebooks

State of software in geomagnetism?

The Ladder of Academic Software Reusability and Sustainability

Making code more useful and shareable

" Can I run it …"

Reproducibility of notebooks

Notebooks as reproducible scientific analyses / reports

Ease of access and portability

Notebooks as tools to share and collaborate on science

From notebooks to packages

Notebooks as testing grounds

Packages for long term extensibility

notebook.ipynb

Usable in this notebook

notebook.ipynb module.py

from module import x

<pre>[1/1] Processing: Downloading</pre>	R	epea	ted	80:00] 80:00] (1.074	MB)
array.Dataset					
Dimensions:	L F	proce	SS		
Timestamp	(Timestamp)	datetime64[ns]	2014-01-01 201	4-01-02T00:59:50	
Data variables:					
Spacecraft	(Timestamp)	<u1< td=""><td>'A' 'A' 'A' 'A' 'A' 'A</td><td>A' 'A' 'A'</td><td></td></u1<>	'A' 'A' 'A' 'A' 'A' 'A	A' 'A' 'A'	
Latitude	(Timestamp)	float64	-1.229 -1.863 50	0.27 49.64	
	(The set and	R	1410 1410 0	2.4.02.07	0.00

Usable by *all* notebooks in this repository

Maturity & usability

notebook.ipynb [installed *package*] from package import x

ds = fetch_data	fetch_data	Sh	ared	
[1/1] Processing Downloadir	: 100% 0100	01	aieu]] (1.074MB)
xarray.Dataset		pro	cess	
» Dimensions:	(NEC: 3, Times	tamp: 9000)		
+ Coordinates:				
Timestamp	(Timestamp)	datetime64[ns]	2014-01-01 2014-01-02T00	:59:50 📄 🛢
+ Data variables:				
Spacecraft	(Timestamp)	<u1< td=""><td>'A' 'A' 'A' 'A' 'A' 'A' 'A'</td><td></td></u1<>	'A' 'A' 'A' 'A' 'A' 'A' 'A'	
Latitude	(Timestamp)	float64	-1.229 -1.863 50.27 49.64	
Longitude	(Timestamp)	float64	-14.12 -14.1333.4 -33.37	8

Usable by anyone

- Package must be maintained
- Should be extensible
- Needs input from others

Reproducible analysis Barriers

- Workflow issues
 - Unscripted steps (analysis as a DAG)
 - Data extracted through a GUI
 - Data passed from someone else
 - Difficult to follow (poor documentation)
- Data dependencies
 - External data (e.g. from another analysis)
 - Large data requiring long processing
 - Non-free data
- Software dependencies
 - Libraries difficult to install / configure
 - Non-free software
- Heavy computation needed

Solutions

- Complex learning process...
 - Find scriptable solutions
 - Date notebooks showing progress
 - Explain steps within notebooks (besides other forms of documentation)
- Different solutions for different data
 - Small data packaged with the analysis
 - Larger data stored elsewhere, with scripts to pull it in; store intermediate steps in processing?
- Push for better packaging & distribution of software
- Avoid non-free software & data
- Software like Dask help make computation portable

Visualisation tools

Menagerie of viz tools

- Main resources:
 - PyViz: <u>https://pyviz.org/</u> (general tools across Python)
 - HoloViz: <u>https://holoviz.org/</u> (coordinated ecosystem)
- Interactive plots within notebooks
 - Planned to support through HoloViz
 - Can develop bespoke visualisations for specific tasks
- Dashboarding
 - Possibility to create live Python-backed applications
 - Options: Panel (part of HoloViz), Dash, Voila (<u>https://pyviz.org/dashboarding/index.html</u>)
 - Dashboards present a clean view (hiding the code) of tools that are actually part of a (optionally hidden) notebook - this makes them more easily modified by users themselves
 - See examples at <u>https://panel.holoviz.org/index.html</u>

HoloViz-maintained libraries

