
Thoughts on Software
Engineering

Aaron Ridley

Version Control
• Important to keep track of changes across

platforms

• Collaboration:
– Don’t keep your own distribution, use capabilities

of repository (git, etc.)

– Talk to others about what you are doing

– Actually share changes with others!
• You can’t force people to do this!

• Make distributions and save them
– Runs should be tagged with distributions

– I do a poor job of doing this. I feel shame.

Testing

• Short tests to see if code is functional
– Can catch unexpected consequences of software

changes

– Does not catch physics errors

– Should be on the core functionality of the code

• Longer tests to see if code is working correctly
– Should have a variety of tests for physics

– When physics are updated, it can catch problems

• Maintaining tests is important and takes a long
time
– Can serve as examples for people to use the code

National Academy Report on Open Code
• Should all code that is developed under federal grants be forced to

be open?
– Some people believe quite strongly one way or the other
– Comparison to data. Comparison to hardware.

• Acknowledgement that software development is expensive
– Roughly 1/3 of code is writing code
– The rest is commenting, documenting, testing, supporting.

• Reproducibility/Repeatability
– Should you be able to exactly reproduce a figure from a paper?

• What does this prove?

– Should you be able to reproduce the idea of a paper using some sort
of code?
• Maybe the same code? Maybe a different code?

• Recommendations:
– Do nothing: probably not going to happen
– Force open code: a lot of resistance to this

• Every proposal MUST have software development plan

– Bribery: offer carrots to researchers to participate
• Make special calls for opening codes
• Make additional funds available for calls to support open code

