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What ground will I cover?
Background and focus topics

§ A few different types of problem
§ Using different techniques to tackle a simple problem

§ Example 1: Plasmaspheric number density
§ Example 2: Kp index

§ Example 3: GNSS time-difference-of-arrival

§ Final Thoughts
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Problem Classes
Fitting statistical models

scorecardstreet.wordpress.com

Basic classes of problem include:
§ Regression

– Predict y = f(x)
– OLS, NNs, superposed epoch analysis, 

GLMs

§ Classification
– Predict label of data given (x, y)
– Algorithm selection, decision trees, 

§ Density Estimation
– Estimate P(x, y) and P(y|x)
– E.g., Distribution fitting, mixture models, 

kernel density estimation

Density Estimation
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What’s the difference between applied 
statistics and machine learning?
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What’s the difference between applied 
statistics and machine learning?

“Machine learning is where only the machine 
learns something”

- Paul O’Brien
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Regression
Fitting functions: Linear regression example

Starting with a simple linear model

§ Generate training data

§ y = 5x + ε
§ ε = N(0, 2.5)
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Neural network:
§ Single layer, linear 

activation, mean 
squared error 
penalty

§ OLS the hard way

Solving the same problem in different ways
Statistical modeling or machine learning?

OLS:

𝑚 =
𝐶𝑜𝑣(𝑥, 𝑦)
𝑉𝑎𝑟(𝑥)

𝑐 = /𝑦 − 𝑚�̅�

Decision Tree:
§ 5 layers

§ No concept of 
slope or intercept
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§ A neural network with a linear activation 
function is equivalent to linear regression, it’s 
just solved “the hard way”

§ NNs provide a flexible framework for finding 
nonlinear mappings from inputs to outputs

§ Chu et al. (2017a,b) model has a 180-element 
input vector including time histories, 2 hidden 
layers

§ Predictions outperform older empirical model 
and show physical behavior like erosion and 
refilling

Neural Networks Fit Functions
Example Application 1: Plasmasphere number density
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Example Application 2:
Probabilistic prediction of the Kp index

Shibaji Chakraborty and Steve Morley
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§ Convection (and hence Kp) 
response is different during storms

§ Use a recurrent neural network to 
classify sequence of input vector
– LSTM: Long short term memory

§ Use a deep Gaussian process for 
probabilistic regression
– A Gaussian process models a distribution 

of functions
– A deep GP uses nested GPs

Probabilistic prediction of Kp index
Hybrid architecture
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§ Gaussian Process gives output 
distribution

§ Uncertainty bounds let us calculate 
probability of exceeding a given Kp

§ Including solar X-ray flux in the input 
vector improves storm-time 
prediction

Probabilistic prediction of Kp index
Hybrid architecture
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Example Application 3:
Predicting model error for radio propagation

Steve Morley, Erin Lay, et al.
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§ Time-difference of arrival (TDOA) is 
used for satellite-based augmentation 
of GNSS, geolocation

§ Single-shell ionosphere models are 
often used

§ For given TDOA from single shell-
model, estimate what we would have 
seen with a ground truth (multishell) 
model

Model error in time-difference-of-arrival for radio
Use density estimation methods
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§ Uncertainty in arrival time of radio signal 
propagating through ionosphere
– Compare multi-shell to single shell ionospheric

raytracing model

§ Use density estimation to find P(x,y) and 
P(y|x)

Model error in time-difference-of-arrival for radio
Bayesian Gaussian Mixture Model
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“Statisticians have to become opportunistic.” – J. Rice

“…faced with a problem, they must find a reasonable solution by 
whatever method works.” – L. Breiman

“Numerical experimentation by itself, unguided by theory, is prone to 
faddish wandering:
Rule 1. New methods always look better than old ones.
…
Rule 2. Complicated methods are harder to criticize than simple ones. 
…” – B. Efron
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§ ML can be thought of as application of 
flexible algorithmic methods with the 
aim of prediction

§ Statistical modeling has general aims 
of describing and understanding a 
system

§ “The whole point of science is to open 
up black boxes, understand their 
insides, and build better boxes for the 
purposes of mankind.” – B. Efron

Can the human learn something too?
ML outcomes can bring insight; SM methods can bring insight

Yu et al., Space Weather, 2012
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§ Software: Scikit-learn; Tensorflow; Torch; Edward; 
PyMC3; …

§ Literature:
– Statistical Methods in the Atmospheric Sciences. 

D.S. Wilks
– Forecast Verification: A practitioner’s guide in 

atmospheric science. Ed. Jolliffe & Stephenson
– Machine Learning Techniques for Space Weather. 

Ed. Camporeale, Wing, & Johnson
– Snakes on a Spaceship—An Overview of Python in 

Heliophysics, Burrell et al., JGR-Space, 2018
– Statistical Modeling: The two cultures, Breiman, 

Statistical Science, 2001

Machine Learning and Statistical Modeling
Approach and Resources

Key questions:
§ What problem do I need to 

solve?
§ Does my method need to be 

interpretable?

§ How should I judge the 
performance of my model?

§ Which methods are appropriate 
for my data/problem?



Slide 18

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED


