

Statistical Modeling and Machine Learning for Space Physics

Steven K. Morley

Space Science and Applications (ISR-1), Los Alamos National Laboratory

What ground will I cover?

Background and focus topics

- A few different types of problem
- Using different techniques to tackle a simple problem
- Example 1: Plasmaspheric number density
- Example 2: Kp index
- Example 3: GNSS time-difference-of-arrival
- Final Thoughts

Problem Classes

Fitting statistical models

Basic classes of problem include:

- Regression
 - Predict y = f(x)
 - OLS, NNs, superposed epoch analysis, GLMs
- Classification
 - Predict label of data given (x, y)
 - Algorithm selection, decision trees,
- Density Estimation
 - Estimate P(x, y) and P(y|x)
 - E.g., Distribution fitting, mixture models, kernel density estimation

UNCLASSIFIED

scorecardstreet.wordpress.com

What's the difference between applied statistics and machine learning?

UNCLASSIFIED

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

What's the difference between applied statistics and machine learning?

"Machine learning is where only the machine learns something"

- Paul O'Brien

Regression Fitting functions: Linear regression example

Starting with a simple linear model

Generate training data

Solving the same problem in different ways

Statistical modeling or machine learning?

Neural network:

- Single layer, linear activation, mean squared error penalty
- OLS the hard way

UNCLASSIFIED

Decision Tree:

- 5 layers
- No concept of slope or intercept

Slide 8

Neural Networks Fit Functions

Example Application 1: Plasmasphere number density

- A neural network with a linear activation function is equivalent to linear regression, it's just solved "the hard way"
- NNs provide a flexible framework for finding nonlinear mappings from inputs to outputs
- Chu et al. (2017a,b) model has a 180-element input vector including time histories, 2 hidden layers
- Predictions outperform older empirical model and show physical behavior like erosion and refilling

Example Application 2:

Probabilistic prediction of the Kp index Shibaji Chakraborty and Steve Morley

Probabilistic prediction of Kp index

Hybrid architecture

- Convection (and hence Kp) response is different during storms
- Use a recurrent neural network to classify sequence of input vector
 - LSTM: Long short term memory
- Use a deep Gaussian process for probabilistic regression
 - A Gaussian process models a distribution of functions
 - A deep GP uses *nested* GPs

Slide 10

Probabilistic prediction of Kp index

Hybrid architecture

- Gaussian Process gives output distribution
- Uncertainty bounds let us calculate probability of exceeding a given Kp
- Including solar X-ray flux in the input vector improves storm-time prediction

Example Application 3:

Predicting model error for radio propagation Steve Morley, Erin Lay, et al.

UNCLASSIFIED

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Model error in time-difference-of-arrival for radio

Use density estimation methods

- Time-difference of arrival (TDOA) is used for satellite-based augmentation of GNSS, geolocation
- Single-shell ionosphere models are often used
- For given TDOA from single shellmodel, estimate what we would have seen with a ground truth (multishell) model

Slide 13

Model error in time-difference-of-arrival for radio

Bayesian Gaussian Mixture Model

- Uncertainty in arrival time of radio signal propagating through ionosphere
 - Compare multi-shell to single shell ionospheric raytracing model
- Use density estimation to find P(x,y) and P(y|x)

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

"Statisticians have to become opportunistic." – J. Rice

"...faced with a problem, they must find a reasonable solution by whatever method works." – *L. Breiman*

"Numerical experimentation by itself, unguided by theory, is prone to faddish wandering:

Rule 1. New methods always look better than old ones.

Rule 2. Complicated methods are harder to criticize than simple ones. \dots -B. *Efron*

. . .

Can the human learn something too?

ML outcomes can bring insight; SM methods can bring insight

Yu et al., Space Weather, 2012

- ML can be thought of as application of flexible algorithmic methods with the aim of prediction
- Statistical modeling has general aims of *describing* and *understanding* a system
- "The whole point of science is to open up black boxes, understand their insides, and build better boxes for the purposes of mankind." – B. Efron

Slide 16

Machine Learning and Statistical Modeling

Approach and Resources

Key questions:

- What problem do I need to solve?
- Does my method need to be interpretable?
- How should I judge the performance of my model?
- Which methods are appropriate for my data/problem?

- Software: Scikit-learn; Tensorflow; Torch; Edward; PyMC3; ...
- Literature:
 - Statistical Methods in the Atmospheric Sciences.
 D.S. Wilks
 - Forecast Verification: A practitioner's guide in atmospheric science. Ed. Jolliffe & Stephenson
 - Machine Learning Techniques for Space Weather.
 Ed. Camporeale, Wing, & Johnson
 - Snakes on a Spaceship—An Overview of Python in Heliophysics, Burrell et al., JGR-Space, 2018
 - Statistical Modeling: The two cultures, Breiman, Statistical Science, 2001

Slide 18

• Los Alamos

EST.1943 —

NISA

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA