Kamodo Analysis Suite

A Functional API for Space Weather Models and Data

Asher Pembroke

Lutz Rastaetter

Darren Dezeeuw
Katherine Garcia-Sage

o

@ COMMUNITY COORDINATED MODELING CENTER

SERVING THE SPACE WEATHER COMMUNITY

Mission Statement: To enable, support, and perform research for next
generation space science and operational space weather models
through an interagency partnership.

@ COMMUNITY COORDINATED MODELING CENTER

SERVING THE SPACE WEATHER COMMUNITY

Mission Statement: To enable, support, and perform research for next
generation space science and operational space weather models
through an interagency partnership.

A few of the models hosted at CCMC

HELIOSPHERE

ANMHD s
S SE S SR HELIOSPHERIC
@BERKELEY TOMOGRAPHY + IPS/SMEI
JACKSON, HICK
”e @CASS, UCSD
LINKER ET AL
@SAIC, CA EXOSPHERIC SOLAR WIND

H. LAMY, V. PIERRARD
@IASB-BIRA

THERMOSPHERE/IONOSPHERE

WEIMER MODEL
@VIRGINIA TECH

ABBYNORMAL COSGROVE-PF
ECCLES ET AL COSGROVE

ATMOSPHERE:
@CASS/USU @SRI INTL., CA MSISE

HEDIN

BATSRUS

MEI-CHING FOK
@NASA/GSFC @IAGA

GLOBAL MAGNETOSPHERE

CMIT LFM-MIX

WINDMI LYON ET AL
HORTON ET AL @DARTMOUTH, NCAR-HAO,
@ U TEXAS JHU-APL,CISM

INNER MAGNETOSPHERE

CIMI
FOK, BUZULUKOVA
@NASA/GSFC

CRCM IGRF
MACMILLAN, MAUS

Kamodo Design Goals

Endeavor to support a wide variety of users, models, and

data sources:

e Quickly integrate new models and data

* LaTeX APlIs for scientists and educators who don't code

 Model-agnostic interpolation API

e Format-agnostic

* Transparent, Permissive Metadata

e Automatic unit conversion

o Compatibility with helio-python ecosystem and support PyHC
standards

* Instant visualization

Kamodo Architecture

* Modelers * Data Scientists

python

c/c++/fortran

PyHC Packages

© = ¢

A Community Python

o

PlasmaPy

* Physicists

LaTex

Kamodo Architecture

- PyHC
Models * Kamodo Q
Data
LaTeX |/O
Readers Unit Conv.
Kamodofy)—b Derived Vars
Fortran)l Coord Trans. \ PacCeryY
C/C++ Analysis
Python Visualization (Ol
Functional Api
e lIa & c PlasmaPy
Scientists

x

Command-line LaTeX Notebook
C C++ Fortran Python Web

Kamodo Functional API

Scientists work with models and data through Kamodo objects, which map
symbols to interpolating functions or mathematical expressions.

kamodo = Kamodo('$e[J] = x"2§',

'm[kg] = x', LaTeX-Formatted input
‘'vikm/s] = y',

'plkg*m/s] = m*v')

Function composition

Unit conversion

Kamodo converts each expression to a highly optimized python
function capable of operating on large arrays.

Kamodo Functional API

Existing Kamodo objects can be updated with new formulas using
dictionary syntax. Function composition is applied automatically.

kamodo = Kamodo('$x = t"2§"')
kamodo['g'] = 'y-1'

kamodo['£f'] = 'g(x)'
kamodo

Kamodo determines that f is a function of t
through composition.

0= 2-125

Many analysis and visualization problems can be framed in terms of
function composition. Since most scientists are comfortable with function
manipulation, this makes Kamodo ideal for their workflow.

@kamodofy

kamodo kamodofy, Kamodo

Qumpy 28 np Any python function can be “Kamodofied” using
SRR TN AR D SO NI MR LR the @kamodofy decorator, adds metadata to a

rho(x = np.array([3,4,5]), ¥y = np.array([1,2,3])): .
"""A function that computes density""" function.
Xty

@kamodofy

kamodo kamodofy, Kamodo

Qumpy 28 np Any python function can be “Kamodofied” using
SRR TN AR D SO NI MR LR the @kamodofy decorator, adds metadata to a

rho(x = np.array([3,4,5]), ¥y = np.array([1,2,3])): .
"""A function that computes density""" function.
Xty

kamodo = Kamodo(rho = rho)
kamodo['den[g/cm”3]'] = 'rho'

kamodo

Lambda indicates kamodofied function

@kamodofy

kamodo kamodofy, Kamodo

Qumpy 28 np Any python function can be “Kamodofied” using
SRR TN AR D SO NI MR LR the @kamodofy decorator, adds metadata to a

rho(x = np.array([3,4,5]), ¥y = np.array([1,2,3])): .
"""A function that computes density""" function.
Xty

kamodo = Kamodo(rho = rho)
kamodo['den[g/cm”3]'] = 'rho'
kamodo

Lambda indicates kamodofied function

kamodo.den(3,4) Function composition & unit conversion

@kamodofy

kamodo kamodofy, Kamodo

Qumpy 28 np Any python function can be “Kamodofied” using
SRR TN AR D SO NI MR LR the @kamodofy decorator, adds metadata to a

rho(x = np.array([3,4,5]), ¥y = np.array([1,2,3])): .
"""A function that computes density""" function.
Xty

kamodo = Kamodo(rho = rho)
kamodo['den[g/cm”3]'] = 'rho'
kamodo

Lambda indicates kamodofied function

kamodo.den(3,4) Function composition & unit conversion

require a data attribute - we satisfy this by

calling functions with their default arguments.

@kamodofy

kamodo kamodofy, Kamodo

Qumpy 28 np Any python function can be “Kamodofied” using
SRR TN AR D SO NI MR LR the @kamodofy decorator, adds metadata to a

rho(x = np.array([3,4,5]), ¥y = np.array([1,2,3])): .
"""A function that computes density""" function.
Xty

kamodo = Kamodo(rho = rho)
kamodo['den[g/cm”3]'] = 'rho'
kamodo

Lambda indicates kamodofied function

kamodo.den(3,4) Function composition & unit conversion

kamodo. rho.meta Python-in-Heliophysics Community Standards
require a data attribute - we satisfy this by
calling functions with their default arguments.

kamodo.rho.data

Supporting Documentation

help(kamodo.rho) kamodo.detail()

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

1D Time Series

= {}, = {},

ngsm O[nT] = A1)

Visualization API

Kamodo generates assets ready for visualization based on the array shapes

of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

2D Parametric Curve

XN (On)[em] = A(Oy)
15

T -

Export to plot.ly »

i
/)

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

3D Parametric Curve

iplot(kamodo.plot(x_Ncomma3 = dict()),

xn3 (tn)[km) = Aty 4 « [

x: -5.595523
Py: 26.32486
z:26.91298
Nt _N:2018-12-24 20:00:00

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

Colored 3D curve

iplot(kamodo.plot(f N = dict()), show_link = False).

N v, ywvs zav)lkgl = ACey, yv s zv)

Visualization API

Kamodo generates assets ready for visualization based on the array shapes

of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

2-D Vector Curve

iplot(kamodo.plot(fvec_Ncomma2 = dict()), show_link = False)

fN_2 (?NAZ) l(mJ = ﬂ(?[\rz)

10 15 20

2-D Vector Field

Visualization API
Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for

interactivity and easy web deployment.

0.5

WL

/// 2/:: :S\\\ \

// NN L7

NNV 2R

NN 22222777

NNV 222222247
9 NNV L 122 222AAAAAA
\ SNNNKKKNKNNNNN VAL 1227272224444
I SESKKKKKKNKNANNNNN 1112272220227
.m SESEKNNNKNKNNNN N1 1772222000227
lw, KRR |1 1722 00000022
m [T TIXTX ST CUNNN PSS S S S S
nlﬂ Htteeee e e e o[v s s 999399333
3 Lttrevvevve e e DNy R
H_ G e 4 0T A A NSNS
£ Nﬁ\\s\\\\:: IEERREE NI IO
g G I VY Y YNNI
g \\\\\\\\\::: ARTRAANANNNN
& VA R AR AR R R R R NN
8 Vs AR AR R A AN
BN
\\\\\\ i :z ////
8 \\\ AT /

>

-0.5

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

3-D Vector Field/Curve

iplot(kamodo.plot(fvec_Ncomma3 = {}), show_link = False)

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for

interactivity and easy web deployment.

rgs 5 | ou
N N
Nx
Nx
Nx2 Nx 2 - fie
Nx3 Nx fie
2 N,M Nx 2 our ndex
NxM, N> Nx 2-(tour (s index
1,M,N Mx Ma plane ndexing
L,1,N LxN M: plane ndex
L,M,1 Lx M: plane index
N, N, N N lored line
NxM, Nx 1 ¢ Surf:
N Param

Contour/Smooth

={}hH. =)

M v, yan)em?] = A, yumr)

I T T I
10 15 20 25
XN

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

Skew/Carpet

v (2o, yvar) [em?] = My, ynar)

Ynm

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

Map-to-plane

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

Parametric Surface

iplot(kamodo.plot(p = {}), show link = False)

PNy, YNm > Zvm)[em] = AXN s YNM > 2NM)

Visualization API

Kamodo generates assets ready for visualization based on the array shapes
of field inputs and outputs. Kamodo currently outputs Plotly (json) for
interactivity and easy web deployment.

Colored Parametric Surface

Kamodofication

- the process of exposing models and data to Kamodo

A model or data source is considered “kamodofied” when all scientifically relevant
variables are exposed as Kamodo objects.

Kamodofication requirements:
1. Model must be accessible from python
2. Model must provide an interpolating function for each variable

3.Interpolating functions should supply default values as arguments, indicating the valid
domain for their inputs.

4. Variable names should follow Kamodo’s naming specification for LaTeX legibility.
5. Interpolating functions must contain the following metadata as attributes:

1. meta - dictionary of {‘units’: ’kg’, ‘citation’ : 'Doe, J. et. al’}

2. data - array
6. Class Methods should use “self” as the first argument.

Kamodofied Models

TIEGCM

Thermosphere lonosphere Electrodynamics General Circulation Model
R. G. Roble et al., High Altitude Observatory, National Center for Atmospheric Research

Kamodofied TIEGCM fields. Interpolator functions provided by
scipy. Dimension reduction is achieved by specifying a value for
time.

kamodo['DEN_250(lat, lon, ilev)'] = 'DEN(250, ilev, lat, lon)'

llat, llon = np.meshgrid(lat, lon)
iplot(kamodo.plot(DEN 250 = dict(lat = llat, lon = llon, ilev = 0)))

DEN»sq (lat, lon, ilev) = DEN (250, ilev, lat, lon)

-

N

, ‘\\-:J“’
S~ N
Q
Q

\‘

ilev

\

\ _
|
o

X lat
Q R
KO 0

~ ///
Q
0°
N
-7¢Q
/\f’@o
7
4

lon

Kamodofied Models

Global lonosphere Thermosphere Model
A.J. Ridley, Department of Atmosphere, Oceanic and Space Sciences, University of Michigan

Access to GITM is provided by SpacePy, interpolation methods built on SciPy.

O (3P) (lon, lat, al)[1/m’] = A(lon, lat, alt)

Kamodofied Models

Global lonosphere Thermosphere Model
A.J. Ridley, Department of Atmosphere, Oceanic and Space Sciences, University of Michigan

Transformation to cartesian |
coordinates is achieved through |
function composition.

Kamodofied Models

Adaptively Refined MHD Solver (ARMS)

Antiochos, S. K., Masson, S. DeVore, Goddard GSFC

ARMS is a 3D solar physics model capable of capturing transient solar eruptions. We have kamodofied the

following fields from ARMS, using a custom octree interpolator written in python. Kamodo is used to
transform from the model coordinates to cartesian.

iplot(arms.plot(rho = dict(logr = llogr, theta = ttheta, phi = 0)))

p(logr, 0, ¢)[g/c'm3] = A(logr, 0, ¢)

Kamodofied Models

Adaptively Refined MHD Solver (ARMS)

Antiochos, S. K., Masson, S. DeVore, Goddard GSFC

ARMS is a 3D solar physics model capable of capturing transient solar eruptions. We have kamodofied the

following fields from ARMS, using a custom octree interpolator written in python. Kamodo is used to
transform from the model coordinates to cartesian.

iplot(arms.plot(RHO = dict(x = 0, y = yy, 2 = 22)))

Trick: rho and RHO are unique python names that
render as the same greek letter in LaTeX, so we are

free to define both rho(x,y,z) and RHO(logr,theta,phi),
different signatures for the same variable.

Kamodofied Data: DISCOVR

The Kamodofied discovr feed provides interpolated plasma and field variables.
The time interpolator is built on pandas’ time series interpolators.

dscovr url = 'http://services.swpc.noaa.gov/products/solar-wind/"'
dscovr = DSCOVR(dscovr url, verbose = False)

dscovr

iplot(dscovr.figure('v'), show link = False)

v(t)[kml/s] = A1,

550

500

450

v(t)[km/s]

400

350

12:00 00:00 12:00 00:00 12:00 00:00
Dec 17, 2018 Dec 18, 2018 t Dec 19, 2018 Dec 20, 201

Kamodofied Data: HAPI

A work-in-progress, the Kamodofied HAPI api is built on the python hapiclient from Bob Weigel.
Here, the variable xvec is built from the position components of ACE spacecraft as a function of
time.

IIiHHHiiII

iplot(kamodo.figure('xvec GSE', t = t), show_link = False)

Xcse(HI[Re] = A1)

ERlG

RN

Summary/Future Plans

tldr: Kamodo provides a functional, publication-focused
interface for space weather models and data.

Further Resources:

Project Page - https://ccmc.gsfc.nasa.gov/Kamodo/

Code - https://sed-qgitlab.gsfc.nasa.gov/ccmc/Kamodo

Future:
Output formats - An extension of visualization API (csv, OpenSpace, json)
Komodo-Live - Automatically generate web-based interfaces similar to Kameleon-Live
Packaging - Provide conda environments for easy distribution

OpenSource - NASA Software Release Process is underway

Thank You!

Kamodo Functional API

Kamodo will interpret certain strings as LaTeX for “syntactic sugar”:

v kamodo = Kamodo (
'rho = ALPHA+BETA+GAMMA',
'rvec = t',

'fprime = x',
'xvec_i = xvec_iminusl + 1°',
'F__gravity = G*M*m/R**2°',

Corresponding LaTeX output is available for use in publications:

kamodo.to latex().

Fortran -> Kamodo

Models must be accessible as python modules to be compatible with Kamodo.
Here, a Fortran reader is used to subclass Kamodo.

Python Kamodo-compatible class

read ascii
scipy.interpolate
numpy np

ColumnReader (Kamodo) :

__init (, filename,

super (ColumnReader,

Developer

['rho'] =

.signatures

(units = '1/cm"3')
lat, lon):
points = np.hstack((alt, lat, lon)).reshape(3,

density(, alt,

read ascii.ascii.read file(filename)
.lon read ascii.ascii.lons
.lat read ascii.ascii.lats
.alt read _ascii.ascii.alts
.data = read ascii.ascii.data

bounds_error = kwargs.get('bounds_error', False)
fill value = kwargs.get('missing value', np.nan)
.interpolator = RegularGridInterpolator((

Fortran Reader

RegularGridInterpolator

args, kwargs):

). init (*args, kwargs)

.alt, .lat, .lon),
.data, bounds_error = False)

.density

Fortran readers and interpolators
may be accessed through the
popular F2Py utility

1).T

.interpolator(points)

filename = 'sample_data/SampleFortran/Sophia_Schwalbe 082718 IT 1 TIE-GCM__20120709_002000.dat’
column = ColumnReader (filename)

column

User

column.rho(331, 33.5,

Custom readers inherit all
the functionality of Kamodo

Kamodo Analysis

If numerical solutions are not available, as in the case of field line integration, Kamodo can
use scipy to solve initial value problems, which are a class of ordinary differential equations.

decay = Kamodo(fprime = $ =.9 A stop condition may be triggered
by returning a negative value

stop _condition(t,x):

x[0] S5

vdecay['f'] = decay.solve('fprime’,
interval = [0, 1],
yo = [1],
events = stop condition,

)

Kamodo Analysis

If numerical solutions are not available, as in the case of field line integration, Kamodo can
use scipy to solve initial value problems, which are a class of ordinary differential equations.

decay = Kamodo(fprime = $ =.9 A stop condition may be triggered
by returning a negative value

stop _condition(t,x):
x[0] 56
iplot(decay.plot(f = dict(t = np.linspace(tinitial, tfinal, 15))), show_link = False)

vd 'f' = d . 1v
ecay| | ecay.solx £ = 20)

0.9

0.8

f@®

0.7

0.6

0.5

Kamodo Analysis

For vector-valued problems, treat each component separately. This framework will allow us
to generate integral curves, including fieldlines, streaklines, particle trajectories, etc.

stop(t,y): Stop when z = .35
.35 - y[2]

fvecprime(t, yvec):
[np.sin(np.pi*t), np.cos(np.pi*t), .1]

test = Kamodo(fvecprime = fvecprime)
v test['fvec'] = test.solve('fvecprime',
[075‘11
np.array([0, 0, 0]),
events = event(stop))

Kamodo Analysis

For vector-valued problems, treat each component separately. This framework will allow us
to generate integral curves, including fieldlines, streaklines, particle trajectories, etc.

stop(t,y): Stop when z = .35
.35 - y[2]

fvecprime(t, yvec):
[np.sin(np.pi*t), np.cos(np.pi*t),

test = Kamodo(fvecprime = fvecprime)

v test['fvec'] = test.solv{) N) T _
iplot(test.plot(fvec = d t(t = np.linspace(tinitial,tfinal, 303))), show_link = False).

Next Steps with OpenSpace

Now that we can quickly expose space weather models and data to
scientists and educators, we can leverage this in the OpenSpace
astrovisualization engine.

We need a target format for assets optimized in OpenSpace. Either
- have Kamodo output to that format

 convert from Plotly’s json

* lupa (python wrapper for Lua/Luadit)

We would like a discussion of pros and cons of either approach.

