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Advent of Data Science
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OBAMA ADMINISTRATION UNVEI	��������������
�������� 
ANNOUNCES $200 MILLION IN NEW R&D INVESTMENTS 

 
Aiming to make the most of the fast-growing volume of digital data, the Obama 
��������������������������������!���������
����������������������������������"�����
improving our ability to extract knowledge and insights from large and complex 
collections of digital data, the initiative promises to ��������������������	�����#�������
pressing challenges. 
 
To launch the initiative, six Federal departments and agencies today announced more 
than $200 million in new commitments that, together, promise to greatly improve the 
tools and techniques needed to access, organize, and glean discoveries from huge 
volumes of digital data. 
 
 !������������������������������������������������������������-technology R&D led to 
dramatic advances in supercomputing and the creation of the Internet, the initiative we 
are launching today promises to transform our ability to use Big Data for scientific 
discovery, environmental and ��������������������������������������������������"�
said Dr. John P. Holdren, Assistant to the President and Director of the White House 
Office of Science and Technology Policy. 
 
To make the most of this opportunity, the White House Office of Science and 
Technology Policy (OSTP) in concert with several Federal departments and 
agencies created the Big Data Research and Development Initiative to: 
 

 Advance state-of-the-art core technologies needed to collect, store, preserve, 
manage, analyze, and share huge quantities of data.  

 Harness these technologies to accelerate the pace of discovery in science and 
engineering, strengthen our national security,  and transform teaching and 
learning; and 

 Expand the workforce needed to develop and use Big Data technologies. 
 



Big Data Elements
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Advance the core scientific and technological means of managing, 
analyzing, visualizing and extracting information from large, diverse, 
distributed, and heterogeneous data sets in order to accelerate progress 
in science and engineering research. Specifically, it includes research to 
develop and evaluate new algorithms, technologies, and tools for 
improved data management, data analytics, and e-science collaboration 
environments.

“In the same way that past Federal investments in information-technology 
R&D led to dramatic advances in supercomputing and the creation of the 
Internet, the initiative we are launching today promises to transform our 
ability to use Big Data for scientific discovery...”
Dr. John P. Holdren, Assistant to the President and Director of the White House Office 
of Science and Technology Policy.



Data Analytics Elements
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Data to Information: powerful approaches for turning data into 
information – machine learning, cloud computing, and crowd sourcing.

Data to Decisions: Harness and utilize massive data in new ways and bring 
together sensing, perception and decision support to make truly 
autonomous systems that can maneuver and make decisions on their 
own.

Human-Computer Interaction: Developing scalable algorithms for 
processing imperfect data in distributed data stores; and Creating 
effective human-computer interaction tools for facilitating rapidly 
customizable visual reasoning for diverse missions.



Data Science: Data Life Cycle
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- Data management 
policies, including access 
and dark data

- Communication and 
storage technologies with 
extreme capacities

- Learning, 
inference, 
prediction and 
knowledge 
discovery for 
large volume 
and dynamic 
data

- Tools for distant 
data sharing, 
real-time 
visualization, and 
software reuse of 
complex datasets

- Cross 
disciplinary 
information and 
knowledge 
sharing; 
interoperability

Data Life Cycle 

Collection, Storage 
and Management 

Data Analytics

Data Sharing and 
Collaboration

- Data mining
to enable 

automated 
hypotheses, 
event 
correlation and 
anomaly 
detection

- Computational, 
mathematical, 
statistical and 
algorithmic 
techniques for 
modeling high 
dimensional data

- Remote 
operation and 
real-time access 
to distributed 
data

- Data representation, 
storage and retrieval

Here we focus on Data Analytics





CEDAR Examples: Data Assimilation
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• Goal: For many dynamical systems, we want to estimate the (often global) 
physical state (e.g., magnetic field, density, temperature) from limited 
observations as best as we can.

• If sufficient sampling of observations are available, the task can be 
approached as:

• a non-parametric time-dependent interpolation/extrapolation 
problem with unknown (unspecified) state evolution/dynamics, 
e.g., tomography.

• a parametric (time-dependent) state estimation problem, e.g., 
spherical harmonics from sampled data.

If, on the other hand, observations are sparse and insufficient to produce a 
global specification, a forward model (time-dependent simulation) can be 
used as a starting point to recursively ingest the available incoming data and 
produce a more realistic specification.



Statistical Estimation: Dynamic Model 
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General State-Space Signal Model

The general hidden Markov model (HMM):

Initial prior: px1(x1) (1)

Measurement/forward model: hi(yi|xi) (2)

State-transition model: fi(xi+1|xi) (3)

dim(xi) = N dim(yi) = M

Goal: Compute minimum mean square error (MMSE) estimates of the
unknown state xi given the measurements y1:j , {y1, . . . , yj}.

bxi|j , E[xi|y1:j] =

Z
xi p(xi|y1:j) dxi (4)



Statistical Estimation: Dynamic Model 
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Linear Additive-Noise State-Space Signal

Model (Linear Gaussian Model)

Initial prior: E[x1] = µ1, Cov(x1) = ⇧1 (5)

Measurement/forward model: yi = H i xi + vi (6)

State-transition model: xi+1 = F i xi + ui (7)

• The first and second order statistics of the zero mean state (ui) and
measurement (vi) noise are given: Cov(ui) = Qi and Cov(vi) =
Ri.

Goal: Compute linear minimum mean square error (LMMSE) estimates
of the unknown state xi given the measurements y1:j.



Basic Elements of Learning Theory



Linear Regression

• A linear relationship clearly exists. How might 
this be established, mathematically?

• Among all possible lines, choose the line that 
is the closest to the data (in some sense).



Linear Regression

• A linear relationship clearly exists. How might 
this be established, mathematically?

• Among all possible lines, choose the line that 
is the closest to the data (in some sense).



Linear Regression: Robust Statistics

• A linear relationship clearly exists, but there is 
an erroneous data point (an outlier).

• Robust statistical estimation; Regularization
• Kamalabadi, 1999; 
• Kamalabadi et al., 2002 



Linear Regression

• A linear relationship clearly exists, but there is 
a erroneous data point (an outlier).

• Outliers do not represent the true 
relationship, but change the relationship that 
is inferred.



Outliers

•How might we handle outliers?
We could remove them manually.

We could explore the data for patterns 
that identify an outlier boundary. 
(unsupervised learning)

We could train a classifier using a set of 
manually-identified outliers. 
(supervised learning)



Clustering

• Relative to outliers, data model errors often 
form a cluster.
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• How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
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Clustering

Repeat the process until 
memberships stop 
changing.

• How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
2. Calculate the means of the two groups (call them clusters).
3. Assign each data point to the nearest mean.



Clustering

• This is known as 1D k-means 
clustering.

final result



Dimensionality Reduction



Dimensionality Reduction—A General Ex.

• Does this data exist across two 
dimensions?
• Technically, yes.
• Practically…?

• How might we assess the true
dimensionality of the dataset?

• CEDAR example: dominant modes 
in the high-latitude ionospheric 
electrodynamics; Matsuo et al, 
2002, 2003, 2005.



Dimensionality Reduction

• One possible approach:
• Find the rotational change of basis 

that best explains the dataset 
variance.

(sample covariance)

2 x N matrix of data



• The eigenvalues and eigenvectors of the sample covariance describe the 
appropriate change of basis.

• What if we project onto the direction of the eigenvector with the largest 
eigenvalue? 

Dimensionality Reduction

(diagonalized sample covariance)

matrix of
eigenvectors

diagonal matrix of
eigenvalues



Dimensionality Reduction

• In this example, 94% of the 
dataset variance lies in a one-
dimensional subspace.

• The data is “almost” one-
dimensional!

• This is known as principal 
component analysis.



• Principal component analysis learns a basis for the data that is adaptive.
• This is directly related to the singular value decomposition (SVD) of the data 

matrix.

Dimensionality Reduction

(singular value decomposition) (low-rank approximation)



A system Identification Perspective of Learning Theory
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System Identification

• If input and output data from an unknown system is available, how 
can we “discover” information about the system?

• What assumptions can be made about the nature of the system?
• Linear and/or time-invariant?



Linear, Time-Invariant System Identification

• General linear data model:



Linear, Time-Invariant System Identification

delay operator

noise
• General linear data model:



Linear, Time-Invariant System Identification

delay operator

noise
• General linear data model:



• Slightly more restricted class of models: rational transfer functions
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Linear, Time-Invariant System Identification



• Slightly more restricted class of models: rational transfer functions

• A, B, C, D, F are lag polynomials, e.g.,
• The system is defined by the weights on past samples of the input, 

output, and noise.

Linear, Time-Invariant System Identification



Linear, Time-Invariant System Identification
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• Given input and output data, how might we estimate the system, or, 
equivalently, estimate the parameter vector 𝜽?



Linear, Time-Invariant System Identification

• Given input and output data, how might we estimate the system, or, 
equivalently, estimate the parameter vector 𝜽?
• One approach: choose 𝜽 that leads to the smallest (in some sense) one-step

prediction error

40



Nonlinear, Time-Varying Systems
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• Systems often exhibit nonlinear behavior, and may change over time.

• The general approach is the same as the LTI case, but there are far 
fewer restrictions on the functional form of the one-step prediction 
error.

fixed window of past input and output data



Nonlinear, Time-Varying Systems

• Common approach: expand the mapping using a basis

• Examples: 
• Wavelet expansions (𝑔# are then dilated and scaled versions of a “mother” 

basis function) 
• Sigmoid, tanh, Gaussian functions

42



Nonlinear, Time-Varying Systems

• Layered/composed expansions are neural networks.

43



Nonlinear, Time-Varying Systems
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• Layered/composed expansions are neural networks.



Nonlinear, Time-Varying Systems

• Time-varying systems can be described using recurrent networks.

1-sample delay

45



Learning Theory Caveats and Open Directions

• With nonlinear systems, cost function minimization presents 
special challenges.
• Nonlinear cost functions are usually non-convex, and have many local 

minima.

• Solutions for 𝜽 that have the lowest minimization error do not 
necessarily perform well on new data (poor generalization 
error).

• Understanding the behavior of generalization error in different 
situations is currently a very active topic of research in machine 
learning and data science.
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Concluding Observations


