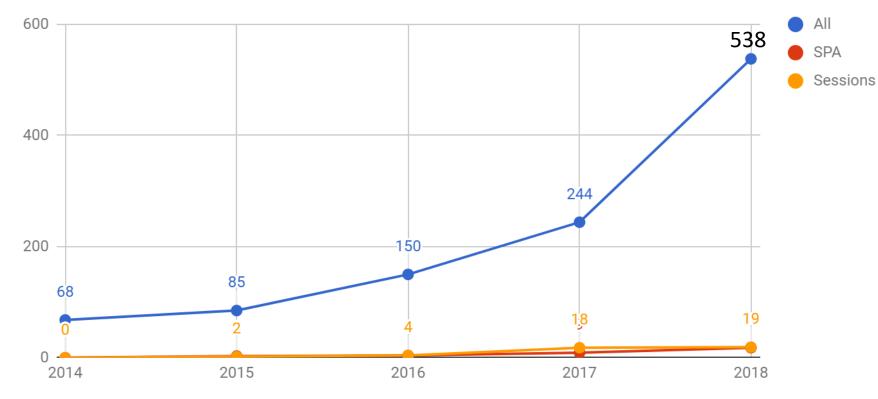
Software Engineering for Heliophysics


CEDAR 2019 Workshop

Monday 17 June 2019

Zia / Eldorado

Heliophysics data science by the numbers

"machine learning" by year at AGU Fall Meeting

CEDAR Workshop

- "machine learning":
- 2016: 1
- 2017:1
- 2018: 4
- 2019:11

Year

Science / Engineering Frameworks

- accelerate time to completion (paper, project)
- essential to heliophysics reproducibility & archiving (agency directions)
- infrequently discussed in formal sessions or literature in our field

- Why does software / data science work inevitably link to open-source?
- Why is everyone talking about Python / Julia / R ?

Jan 24, 2019: https://github.blog

Top Machine Learning Languages on GitHub

- 1 Python
- 2 C++
- 3 JavaScript
- 4 Java
- 5 C#
- 6 Julia
- 7 Shell
- 8 R
- 9 TypeScript
- 10 Scala

Packages Imported by Machine Learning Projects on GitHub

1 74% numpy 2 scipy 47% pandas 3 41% matplotlib 40% 4 scikit-learn 5 38% 6 31% six tensorflow 24% requests 23% 8 python-dateutil 22% 9 10 21% pytz

True cost of proprietary software

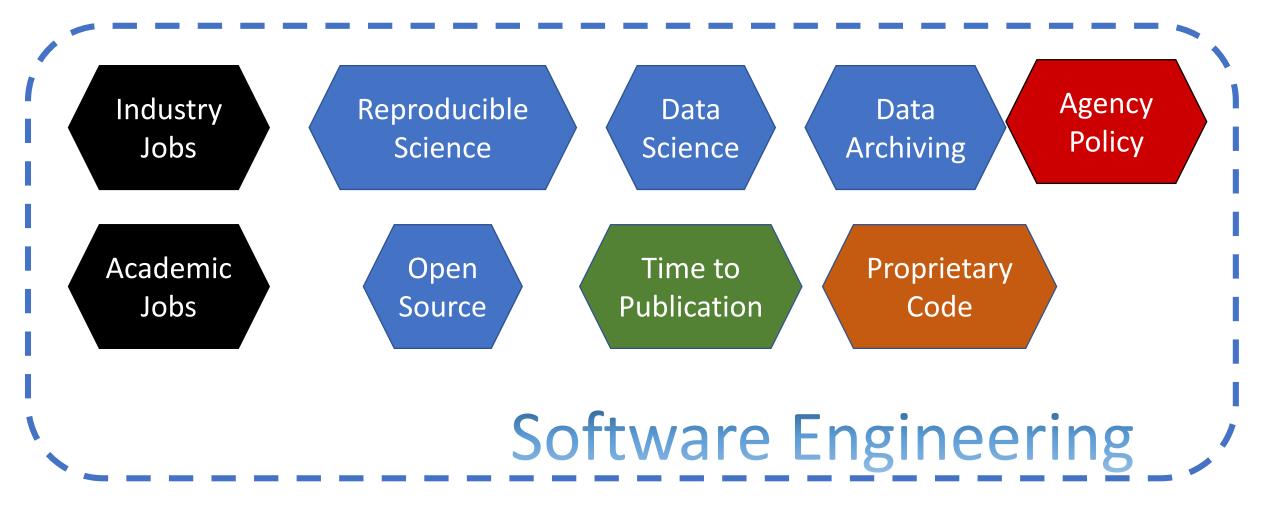
- Proprietary software can accelerate initial conceptual work
- Transition to working, deployable, scalable, replicable algorithm is more problematic

Specific examples:

- Matlab: GNU Octave provides an alternative, but plotting can be buggy and no easy path to parallelization
- IDL: likewise, GDL is compatible with a lot of IDL code (that uses proper syntax) but plotting is onerous

Both GNU Octave and GDL have active communities, but they are a fraction of the size of Python, Julia and R communities

Agency pathways include


"...software needs to be as open as possible; as closed as necessary."

Open Source Software Policy Options for NASA Earth and Space Sciences, National Academies Press (2018) doi: 10.17226/25217

moving toward FAIR (Findable-Accessible-Interoperable-Reusable) science principles

Open Science by Design: Realizing a Vision for 21st Century Research, National Academies Press (2018) doi: 10.17226/25116

Nexus of Interests

New work: suggest latest version with fallbacks for older versions

Status of Python branches

Branch	Schedule	Status	First release	End-of-life
master	PEP 596	features	TBD	TBD
3.8	PEP 569	prerelease	2019-10-21	2024-10
3.7	PEP 537	bugfix	2018-06-27	2023-06-27
2.7	PEP 373	bugfix	2010-07-03	2020-01-01
3.6	PEP 494	security	2016-12-23	2021-12-23
3.5	PEP 478	security	2015-09-13	2020-09-13

https://devguide.python.org/#status-of-python-branches

Outline

- 1. Software Version Control GitHub Tutorial (13:35-13:45)
- 2. Continuous Integration: Automated software testing (13:45-14:00)
- 3. Accessible heliophysics data: lightweight standard HAPI (14:00-14:15)
- 4. OpenMPI physics model: Fortran 2018 design patterns & Python integration (14:15-14:30)
- 5. Mobile / Web app dev for crowd-sourced science (14:30-14:45)
- 6. Science software workflow (14:45-15:00)
- 7. Intro to concurrent / parallel programming in Python (15:00-15:10)
- 8. Room discussion (15:10-15:30)