CIRCE
Coordinated Ionospheric Reconstruction CubeSat Experiment

Tri-TIP Optical Calibration

Bruce Fritz
NRL Code 7630
Washington DC

Bruce Fritz is an NRC Postdoctoral Research Associate at the U.S. Naval Research Laboratory (NRL)
This work was supported by the Chief of Naval Research.
Objective: Provide space-based *tomographic* specification of n_e vs altitude and orbit phase angle derived from ultraviolet (UV) observations of the ionosphere with different viewing angles from multiple CubeSats

- Two 6U CubeSats fly tandem (lead/trail)
 - 2 Tri-TIP / CubeSat (4 Total)
 - Coplanar orbit optimized for tomographic reconstruction
- NRL has heritage from the Tiny Ionospheric Photometer (TIP) on COSMIC & GROUP-C (ISS)
Tri-TIP – Viewing Geometry

- Lead
 - 16° down (limb)
 - 17° down (limb)
 - 45° down (wake)

- Trail
 - 45° down (ram)
 - 90° down (nadir)

Baseline separation
250 km

***Note this is a very sparse representation of the actual FOV for CIRCE
Dayglow spectrum filled with emission features (e.g. O, O$_2$, H, N$_2$, N)

Nightglow dominated by only a few species (O, H)

Target measurement is atomic oxygen O$_1$ 135.6 nm

Spectrum taken from UVLIM experiment

Data for figure from Budzien et al. [1994]
TIP used the Hamamatsu R10825 PMT
Tri-TIP uses the R13194 PMT

Example of a commercial FUV bandpass filter
Excludes Lyman-α (121.6 nm)
Tri-TIP – Red Leak Contamination

“Solar blind” PMTs see city lights! → Red Leak

Figure from Budzien et al. [2009]
Each Tri-TIP fits within 1U form factor

Tri-TIP optical layout

Parabolic Mirror
Deployed Mirror
Heated Filter
Dark count PMT
Beam Splitter
UV PMT
Shutter & Solenoid
Red-leak PMT

Figure from Dymond et al. [2017]
Tri-TIP – Optical Path

- Parabolic Mirror
- Heated Filter
- Beam Splitter
- UV PMT
- Red-leak PMT

[Mirror optional]

New to Tri-TIP

Heritage on TIP

May be used as 2nd UV PMT

Incoming Light
Ø SrF\textsubscript{2} filter substrate
- Cutoff at \textasciitilde128 nm (room temperature)
- Cutoff shifts > 131 nm when heated to 100°C
- Eliminates oxygen triplet at O\textsc{i} 130.4 nm

Target reduction is 0.5%

Figure from Stephan et al. [2018]
Two types of substrate:
1. Sapphire (Al$_2$O$_3$)
 - Red leak correction
 - Eliminates OI 135.6 nm
2. MgF$_2$
 - Limb sensor

Al+MgF$_2$ reflective coating uses polka-dot pattern to minimize geometric effects
Tri-TIP – Beam splitter characterization

Transmissivity and reflectivity tested as a function of wavelength

Substrate successfully eliminates OI 135.6 nm

Figure from Fritz et al. [2019]
Tri-TIP – Effective Passband

Full Spectrum

What a “Solar Blind” PMT measures

What TIP measured

What the Red Leak PMT will measure

Final Tri-TIP Result
Summary

Tri-TIP provides compact, high-sensitivity remote sensor in 1U package

- NRL has significant heritage through TIP and other UV remote sensors
- Limb sensor has potential to double observing capability
- Testing underway to characterize and match the UV and Red response of the Hamamatsu PMTs

CIRCE / Tri-TIP data will be analyzed using the VERT method

- CIRCE mission will be able to retrieve ionospheric structure
- Algorithms are tuned as information about observation scenario evolves

Launch expected to LEO as part of the Space Test Program
Acknowledgments

Bruce Fritz is an NRC Postdoctoral Research Associate at the U.S. Naval Research Laboratory (NRL), and this work was supported by the Chief of Naval Research

Works Cited: