Measurement of atmospheric neutral wind and temperature from Fabry-Perot interferometer data using piloted deconvolution

Matthew Grawe, Kristina Chu, Jonathan Makela

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Overview

- Fundamentals of Fabry-Perot interferometry and application in atmospheric neutral wind and temperature estimation
- Using a pilot signal to track instrument drift (comparisons, advantages)
- Generating a pilot signal pragmatically (results from field experiments at the Urbana Atmospheric Observatory)

Fabry-Perot Interferometers

- Commonly used to measure the spectrum of the 630.0-nm redline emission, enabling estimation of lineof-sight neutral wind and temperature.
- Requires a zero-wind reference, which often makes use of zenith observations and assumptions about the behavior of the vertical wind (typically "always zero" or "average zero").

Grawe, Chu, and Makela (2019)

Fabry-Perot Interferometers

- Ambient temperature fluctuation in the instrument housing leads to a time-varying system function ("drift")
- A method to track instrument drift and the appropriate vertical wind assumption enables estimation of instantaneous vertical wind.

Tracking Instrument Drift

- Instrument drift is often tracked by estimating the system function using an "isolated" exposure from a frequency-stabilized HeNe laser (≈ impulse input) after every sky exposure.
- Instrument parameters estimated from laser exposures are then linearly interpolated in time.

Grawe, Chu, and Makela (2019)

Tracking Instrument Drift

- Using linear interpolation introduces a component of error into the wind measurement.
- Can we track instrument drift and take sky exposures at the same time?
 - Eliminates linear interpolation error
 - Eliminates need for a laser exposure after every sky exposure

Grawe, Chu, and Makela (2019)

Forward Model (Traditional)

700

Laser Exposure

500

Forward Model ("Piloted")

 Allow laser light to enter the aperture of the instrument during sky exposures

$$\tilde{S}(r,t) = \int_{-\infty}^{\infty} A(r,\lambda,t) \left[Y(\lambda,t) + \delta(\lambda - \lambda_p) \right] d\lambda = \int_{-\infty}^{\infty} A(r,\lambda,t) Y(\lambda,t) d\lambda + A(r,\lambda_p,t)$$

Assessing Invertibility

- Coordinate descent with system updates between stages (gradient-based and suboptimal even with convex cost, but computationally cheap).
- Monte Carlo Simulation:
 - 1. Perform a traditional laser + sky calibration on a noisy image with a random wind $\in [-300, 300]$ m/s and a random temperature $\in [200, 1200]$ K
 - 2. Apply a random perturbation to neutral wind/temperature and also "drift" the instrument (perturb the etalon gap and several instrument parameters) and generate a "piloted" fringe pattern
 - 3. Run a "piloted inversion" to recover the perturbed neutral wind and temperature

Assessing Invertibility

Grawe, Chu, and Makela (2019)

Wind precision does not tend to increase with SNR

Temperature precision tends to increase with SNR

Assessing Invertibility

- Uncertainties propagated through forward model using input covariance and numericallycalculated Jacobian
 - Propagated temperature uncertainties slightly underestimated
 - Propagated wind uncertainties underestimated by a factor of around 3 at high SNR

Grawe, Chu, and Makela (2019)

Improvements over traditional deconvolution

 Inversion variance and variance of interpolation error are added in quadrature to form total wind uncertainty.

Method	SNR	Δt_S (min)	$\sigma_v ~({ m m/s})$
standard	5	3 m	6.47 m/s
standard	5	6 m	14.8 m/s
standard	5	9 m	27.23 m/s
piloted	5	3/6/9 m	8.22 m/s
standard	12.5	3 m	4.89 m/s
standard	12.5	6 m	14.2 m/s
standard	12.5	9 m	26.9 m/s
piloted	12.5	3/6/9 m	6.31 m/s
standard	25	3 m	4.54 m/s
standard	25	6 m	14.1 m/s
standard	25	9 m	26.8 m/s
piloted	25	3/6/9 m	4.57 m/s

Total Velocity Uncertainty

Grawe, Chu, and Makela (2019)

- Assumes gap fluctuation has a 5-nm amplitude and a 20-minute period
- Piloted method is the lower variance estimator for wind at longer exposure times (exceeding ~3 minutes) under these particular assumptions (~20% of observations across several existing FPIs)

Field Experiments

• We tested three potential methods for creating a HeNe pilot signal.

a) Dome Scattering Method

use a scattering chamber

b) Direct Method

directly point laser into instrument aperture

scatter laser into aperture using plastic dome

c) Specular Method

Grawe, Chu, and Makela (2019)

Field Experiments

Grawe, Chu, and Makela (2019)

- The spectral method was the most pragmatic
 - Less prone to nonuniformity on the CCD, based on our tests
 - Laser light entering the aperture was strong enough for an inversion

Field Experiments

- The spectral method was the most pragmatic
 - Less prone to nonuniformity on the CCD, based on our tests
 - Laser light entering the aperture was strong enough for an inversion

Conclusions

- Methods like piloted deconvolution can track instrument drift without performing an isolated laser exposure after each sky exposure.
- In many cases, piloted deconvolution leads to a lower variance wind estimator, especially in cases with longer exposure times and significant instrument drift.
- Field experiments suggest that it is possible to generate a pilot signal using dome-scattered laser light.

References

- M. A. Grawe, K. T. Chu, and J. J. Makela, "Measurement of atmospheric neutral wind and temperature from Fabry-Perot interferometer data using piloted deconvolution," Appl. Opt. 58, 3685-3695 (2019)
- B. J. Harding, T. W. Gehrels, and J. J. Makela, "Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data," Appl. Opt. 53, 666–673 (2014).

