

Proposal #1: Meridian Chain of Interferometers (MerCl)

- NSF Distributed Array of Small Instruments (DASI)
- Program Solicitation NSF 19-545
- 10-station chain of FPIs
- Stretches along a common magnetic meridian in the Americas, spanning from Resolute Bay, Canada to King Sejong Station, Antarctica.
- Would provide thermospheric neutral wind and temperature measurements over the American sector and span both hemispheres.
- Significantly advance our understanding of the coupled ionosphere, thermosphere, magnetosphere system; improve operational Space Weather specification & forecasting; to improve science databases for the community.

Proposal #2: Enhanced SOFDI (E-SOFDI) Units

- Mid-scale Research Infrastructure-1
- Program Solicitation NSF 19-537
- Proposal submitted by NJIT and JHU/APL
- Acquisition, testing, and validation of three relocatable, independent, state-of-the-art E-SOFDI units

Wind speed (m/s)

- Capable of high temporal <u>24-hour</u> <u>observations</u> of thermospheric winds and temperatures.
- This proposal was not funded this year, but we intend to try again.

Daytime Wind Observations

Error bars = ± 2 standard deviations.

Empirical Thermospheric Neutral Wind Models

The Horizontal Wind Model (HWM14)

Instrument	Points	No.	He2	Hoz	Han	C.h.	arms.	anna	anna.
14	a of Slahr	abou Borot	Interference	ter (CDD) or	diacobaco	of Contract D	oday (ICD)	00	14
Lin	e or signi, r	unyrein	AND ACTORN	all pro, or	iu inconcito	A JOHIER A	oour powy		
Arecido (ISR)	8051	11.62	-2.59	-9.25	-5.58	34.09	33.97	33.54	30.84
Arrival Height (FPI)	138690	-14.50	-13.19	-0.59	-6./4	103.55	101.06	68.60	69.07
Millistone Hill USK	/503	-20.05	-9.70	-12.50	-9.92	59.95	48.42	47.71	45.79
Resolute bay 0-PU	17377	0.41	-0.83	2.17	0.52	107.91	03.74	/1.30	07.98
Senares merrie (CH)	3730	2.97	-15.97	-27.72	-0.02	110.57	07.24	93.62	01.23
AE E NATE	\$7479	7.74	7.76	5 21	1.01	69.72	56.59	55.40	E1 40
GOCE	572672	05 70	10.59	40.46	6.01	49.92	50.41	53.40	26.05
GOCL	313012		frond Cab	The second second	0.01		20071	0000	30.03
		Men	alonai, Hadi	ry-perci ana	rietometer				
Arecibo	81552	-12.05	3.97	-0.03	3.32	39.46	37.72	36.88	35.38
Arequipa	108139	1.80	4.11	3.57	-1.21	69.92	66.61	66.37	65.14
Halley Bay	91205	25.35	-19.62	12.59	0.68	88.48	72.50	68.87	63.51
Jicamarca	2054	-1.95	5.62	-1.68	2.02	42.42	41.60	40.96	39.11
Milistone Hill	68185	-46.01	-6.70	-20.80	-2.28	76.85	66.72	71.69	66.17
Mount John	1949	48.15	1.11	40.93	16.31	55.84	47,41	07.59	46.07
MOVE	3//20	0.33	0.54	-2.87	-3.59	4/.32	44./8	40.80	44,98
PARI Debra Clas	21500	-28.56	18.74	-3.83	7.60	53.17	52.94	50.34	48.00
POINT FINE	430914	-22.51	09.34	0.72	0.22	54.29	76.46	39.99	47.05
RENOR	12050	2,49	-1.19	-2.50	-2.91	40,40	30.40	43.15	30.10
South Bolo	10903	-07.35	-0.77	-10.17	-8.81	03.20	90.50	78.50	30.97
Scalbard	1201	22.60	20.70	0.59	7.00	134.67	110.60	101.06	102.43
Dada	1001	-32.00		13.00	0.00	127.22	107.34	07.43	01.03
Whiteen Lake	4800	-13.33	-0.17	12.09	6.00	68.38	08.40	\$0.03	95.92
Haron care	1020	-22.10	Meridiona	/ Sotellite/F	locket	00.10	00.10	00.72	50.50
DEALER CAR AND					2.20		-	-	
DE2 FP1 630 mm	0000	28.21	-4.08	2.45	2.78	108.31	78.94	//.45	81.04
LIADS MINIDELSS 7.7 mm	412440	2.50	2.00	0.04	0.02	65.09	60.21	52.90	63.60
Conto Mintoli 337.5 min	1.511	2.50	mail Enhry	Dever Interf	-0.02	0.00	00.31	52.09	54.50
Araciba	70109	26.77	1265	2.04	6 10	57.66	\$2.07	47.50	44.71
American	79108	30.77	22.00	-0.04	-0.19	32.00	33.07	47.39	44./1
Unliev Pre-	01245	14.95	15 51	-5.12	-9.07	02.01	02 20	66.64	65.25
licomorco	1001	49.33	42.00	22.10	7.74	50.30	20.70	64.21	50.55
Millstone Hill	68175	22.12	28.37	-974	-9.62	70.32	68.29	63.56	63.21
Mount John	19.69	35.17	-1.38	-855	1.70	70.81	49.92	56.70	54.07
Movil	24227	63.54	- 26.99	-9.16	4.39	55.55	60.72	56.49	48.35
PARI	12610	35.01	15.84	-27.40	-13.64	57.67	\$1.25	56.36	51.32
Poker Flat	450925	-14.35	-4.16	0.49	-9.09	70.35	65.00	72.56	60.30
RENOIR	12483	57.23	-34.74	-6.05	-0.71	44.94	63.27	46.09	40.32
Sandrestrame	10442	-15.31	20.62	-7.31	-3.94	102,68	114,75	97.96	104.09
Svalbard	1353	-40.74	8.83	-3.57	-9.32	129.08	140.66	125.08	129.76
Thule	15643	2.78	27.58	-1.95	-7.45	150.12	133.50	118.98	118.30
Watson Lake	4979	-20.23	52.09	13.47	5.69	67.85	86.19	68.89	64.96
			Zonal, Sat	ellite, and R	ocker				
DE2 WATS	7233	-19.95	1.00	-6.92	-6.52	125.73	88.99	89.17	94.83
TMA Release	2774	9.40	-2.02	6.37	-5.82	53.60	57.35	34,79	33.21
LIADS MINIDE EET 7 pm	410330	20.77	0.77			10.0.0	100.000	100.00	

Empirical model, based on Wind <u>Observations</u>
Database of winds spanning 40+ years

- Vector spherical harmonics formulation

Instrument	Location	Height (km)	Years	Local Time	Days	Points	Reference
			Fabry-Perot In	terferometer			
Arecibo	18.7°N, 67.5°W	250	2012-2013	nighttime	428	29,434	Ruan et al. [2013]
Arequipa	16.47°S, 71.49°W	250	2007-2013	nighttime	260	16,447	Meriwether et al. [20
Jicamarca	11.96°S, 76.86°W	250	2009-2013	nighttime	318	10,056	Meriwether et al. [20
Movil	14.97°S, 74.89°W	250	2011-2013	nighttime	293	10,412	Meriwether et al. [20
PARI ^a	35.2°N, 82.85°W	250	2011-2013	nighttime	166	12,610	Makela et al. [201]
Poker Flat ^b	65.1°N, 147.5°W	250	2009-2011	nighttime	297	5,983,090	Conde and Smith [19
RENOIR ^c	6.89°S, 38.56°W	250	2009-2012	nighttime	637	37,301	Makela et al. [2013
South Pole	90.0°5	250	1989-1999	nighttime	1,091	198,560	Hernandez et al. [19
			Sate	llite			
GOCEd	± 83.4°	253-295	2009-2012	twilight	813	6,613,172	Doornbos et al. [20]

Strengths:

- "Global" coverage
- Meridional and Zonal directionality
- Includes vertical wind profiles
- Describes atmospheric tides & general circulation patterns

Limitations:

- Wind observations are patchy in both time and space
- Low temporal variability
- No solar flux (F10.7, F10.7A) dependence

The MENTAT Wind Model

Magnetic mEridional NeuTrAl Thermospheric (MENTAT)

- Empirical model, based on Wind Derivations
- Used global 30-year database of ionosonde data
- Winds derived from ΔhmF2 via first-principles modeling

Strengths:

- "Global" coverage
- High-temporal (hourly) variability
- Includes solar flux (F10.7, F10.7A) dependence
- Describes atmospheric tides & general circulation patterns

Limitations:

- Winds are derived
- F region winds only
- No zonal winds; only meridional (North/South)

Using MerCI wind observations to improve Thermospheric & Ionospheric Physics

Knowledge of Meridional Winds is Critical for Accurate Ionospheric Modeling

Relevant Science:

- 1) Ionization Troughs in Ionosphere
- 2) TIDs: Origination, Propagation
- 3) Midnight Density Maximum (MDM), Midnight Temperature Maximum (MTM)
- 4) Winds driving EIA morphology
- 5) Seasonal North/South bulk wind flow; O/N₂ and the 'Thermospheric Spoon'
- 6) Latitudinal variability of tides
- 7) Wind correlation lengths (distance)

Expected behavior of hmF2 and winds in the Southern Hemisphere Canberra, Australia, March 2-5, 1990

Observed & Modeled data at Townsville, Australia, March, 1974

Cachoeira Paulista, Brazil					
Latitude	Longitude				
22.7°S	45.0°W				

This site is at a low geomagnetic latitude... might we see the winds necessary to drive a 'Midnight Collapse' of hmF2?

> Thanks to John Noto for these preliminary FPI wind data...

APL

Long-Term Goals

1. Continuous 24/7 thermospheric neutral wind and temperature observations.

2. A combination of instruments designed/optimized for nightside and dayside observations

- a) Ground based: FPI + SOFDI.
- b) Balloon-based: Qian Wu's data from tethered chains/networks?
- c) Space-based: next-gen MIGHTI... smaller, more.
- 3. Near-real-time neutral wind observations with understood error bars.
 - a) Use with Kalman Filter.
 - b) Direct ingest into thermospheric models.
 - c) Drive operational space weather models local and global.

Continuous, long term thermospheric wind data sets would enable new research opportunities...

Tidal Behavior vs. Time and Location

- Spectral analysis of modeled winds over full solar cycle; Townsville, AU; March & September equinoxes.
- 4 strongest tidal components:
 - 24-hour (diurnal)
 12-hour (semidiurnal)
 8-hour (terdiurnal)
 - 4. 6-hour (quatradiurnal)
- Repeat this study at different locations to determine how various tides vary with time/LAT/LON.

Long-Term Interhemispheric Seasonal Bulk Wind Flow

Generated using 180 global locations; 90 in north, 90 in south.

<u>Summary</u>

- 1. Continue to evaluate and validate empirical wind models.
 - Compare observed meridional winds with MENTAT and HWM14.
 - Meridional winds are critical to local and global plasma dynamics.
- 2. Drive first-principles models.
 - a) Use nightside FPI winds; combine with MENTAT and HWM14 dayside winds.
 - b) Use those winds to to drive the FLIP model, generate modeled hmF2 and NmF2.
 - c) Compare modeled hmF2 & NmF2 with hmF2 & NmF2 from digisonde/VIPIR observations.
- 3. Begin neutral wind data assimilation

Step 1: Use a Kalman Filter with MENTAT/HWM14 as the background model. Step 2: Ingest directly into a thermospheric model... use the wind observations to constrain the drivers.

Thanks! Questions?

Please visit our MerCl poster ('DATA 10') today... I will be at the poster from 4:00-5:00 PM.

Backup slides