
Continuous Test / Integration 
Michael Hirsch

CEDAR Workshop 2019



Why use an automated testing system?

• Saves much needless errors found by colleagues and users

• Ensures code lint standards are met (PEP8, code style, type hinting)

• Check that all or critical versions of compilers, interpreters, OS are 
supported with each “git push”



CI use is improving in the heliophysics community

• Need to update/transition away from cumbersome, outdated test 
systems missing critical functionality, or have excessively verbose and 
difficult to maintain syntax

• Encourage being flexible to use of multiple CI systems to improve 
coverage, decrease reliance on single system that could disappear

• Software intended for use on end-user computers should always test 
on Windows as well as Linux

Currently, two free CI providers have easy access to Linux, MacOS and 
Windows:



Any language is supported by CI

• If you can build it on your computer, normally it can be done on CI

• Obvious exceptions are running large simulations—make a small test 
case, test the components of your model “unit test”

• Projects that need a lot of setup may be better served by using a 
Docker image on the CI (faster to load and run)

• “on-premise” CI requires additional setup and maintenence, but is 
available for free from AppVeyor and traditional systems like Jenkins



CI is essential when doing significant changes

• First write registration cases that test the whole project

• Then write unit tests, at least for the code being added / changed

• Implement the CI

• Iterate

Note: Python 2.x => 3.x upgrades should additionally add type hinting 
and CI checks of type hinting.

• Industry continues to make significant investment in type hinting. Any 
Python project will strongly benefit from use of type hinting.



Selecting test framework

• Don’t invent your own!

• Python: PyTest, C++: Google Test

For Python, PyTest is essential—it 
is so much simpler to achieve 
much better test coverage



conftest.py test_adding.py

import mathfun as fun
from pytest import approx

def test_addints():

assert fun.add(1, 1) == 2

def test_addfloats(floatgen):

x, y = floatgen

assert fun.add(x, y) == approx(x+y)

import pytest

import random

@pytest.fixture

def floatgen():

a = random.random()

b = random.random()

return a, b

pytest -v reveals that Pytest knows a priori to find fixtures in conftest.py



Travis-CI examples

language: python

python:
- 3.7
- 2.7

install: pip install -e .[tests]

script:
- pytest -v
- mypy .
- flake8

language: cpp

install: 
- cmake –B build
- cmake --build build -j

script: 
- cd build
- ctest -V

Python: .travis.yml C++: .travis.yml



Travis-CI status dashboard


