Gravity Waves in the Stratosphere and Lower Mesosphere above McMurdo & Potential Link to Persistent GWs in the MLT

Jian Zhao, Xinzhao Chu, Cao Chen, Xian Lu, Sharon L. Vadas, Erich Becker, R. Michael Jones, Ian Geraghty, and Zimu Li

University of Colorado Boulder

McMurdo Fe Boltzmann Lidar Campaign

Persistent Gravity Waves Challenge Understanding

Persistent GWs in McMurdo MLT

Fe Density

[*Chen et al.*, 2016; *Chen and Chu*, 2017; Chu et al., 2011]

Signatures: Large amplitude (±20K) Dominate temperature variations Perpetually exist summer winter τ : 3-10 h, λ_z : 20-30 km

Temperature

Potential sources for persistent GWs in MLT

Persistent GWs in MLT [*Chen et al*, 2013, 2016]

Urge the characterization of GWs in the stratosphere Search for wave sources for MLT persistent waves and stratospheric GWs

Stratospheric and MLT GWs: τ , λ_z , c_z

MLT persistent waves τ : 3-10 h, λ_z : 20-30 km

Stratosphere Dominant GWs Vertical wavelength: ~5.5 km (summer) to ~8 km (winter) Ground-relative period: ~4.5 h (summer) to ~5.7 h (winter) Vertical phase speeds: constant (~0.4 m/s) throughout the year

Stratosphere: Linear Correlation of λ_z , τ with Bkg Wind

MLT persistent GWs vs stratospheric GW strength: E_{pm}

Seasonal Variations of E_{pm} in the stratosphere

E_{pm} vs Wind Rotation and Wind Speeds (ECMWF)

In-Situ Source: Polar Vortex (MERRA) vs E_{pm}

Small E_{pm} occurs all year round
Large E_{pm} happens:
➤ McMurdo is inside the jet stream core 8° to 23° towards the pole
➤ Wind is strong

 Stratosphere GWs
 GWs (mainly orographic GWs) from lower atmosphere modulated by critical level filtering

In-situ wave source due to strong polar vortex MLT persistent GWs λ_h : Dominant stratospheric GWs << MLT persistent GWs

MLT persistent waves

How about secondary gravity wave generation?

Dominant stratospheric GWs

Secondary Wave Generation & Signature

Secondary Wave Generation at McMurdo

[Vadas et al., 2003, 2018]

A potential general picture of GWs above McMurdo

Thermosphere

Conclusions

Compare wave parameters of stratospheric dominant gravity wave and MLT persistent wave

Seasonal variations of τ , λ_z , λ_h , E_p , c_z , c_h , τ_I , c_{gh} , c_{gz}

 λ_z and τ are : Linearly correlated with background winds

- Stratospheric GW source:
 - E_{pm} : Critical level filtering of GWs from lower atmosphere, Insitu generation, Doppler shift
- Speculate dominant stratospheric gravity waves are not the waves that propagate into MLT and become the observed persistent GWs
- Possible source of persistent waves in MLT: Secondary gravity wave generation

Thank you! Questions?