

Polar region magnetometer review and future - CEDAR Summer Workshop 2018

Zhonghua Xu, Michael Hartinger, Robert Clauer, Daniel Weimer with contributions from M. Engebretson, E. Zesta, A. Gerrard, H. Kim, V. Eccles and others

This work supported by NSF PLR-1543364

Outline

- Overview of current magnetometer observations in polar regions
- Importance of magnetometer observations
- Future plans and ideas for collaboration

WirginiaTech

Overview of current magnetometer observations in polar regions

- What is a magnetometer?
- How many magnetometers?
- How to access data?

Autonomous Adaptive Low-Power Instrument Platform

Fluxgate magnetometer

Search coil (induction) magnetometer

Summary plots for inter-hemispheric comparisons: High resolution (1s) data

 Daily summary plots for individual fluxgate magnetometers already available on MIST website (<u>http://mist.nianet.org</u>)

Summary plots: Induction Magnetometer

 Daily summary plots for individual induction magnetometers already available on MIST website (<u>http://mist.nianet.org</u>)

WirginiaTech

Overview of current magnetometers in polar regions

Courtesy of V. Eccles and M. Engebretson

Conjugate Fluxgate magnetometer UrginiaTech

Virginia Tech

Center for Space Science and Engineering Research

oace @

PG5	5.71	-81.96	37.03	-69.51	Antartica	Virginia Tech	THL	290.77	77.47	29.24	84.72	Qaanag	DTUSpace
PG4	12.25	-83.34	36.17	-70.90	Antartica	Virginia Tech	SVS	294.90	76.02	32.87	83.00	Savissivik	DTUSpace
PG3	37.62	-84.81	37.95	-73.43	Antartica	Virginia Tech	KUV	302.82	74.57	41.92	80.69	Kullorsuaq	DTUSpace
PG2	57.96	-84.42	39.07	-75.24	Antartica	Virginia Tech	UPN	303.85	72.78	40.20	78.93	Upernavik	DTUSpace
PG1	77.20	-84.50	33.68	-76.55	Antartica	Virginia Tech	UMQ	307.87	70.68	42.58	76.38	Uummannaq	DTUSpace
PG0	88.68	-83.67	38.35	-78.48	Antartica	Virginia Tech	GDH	306.47	69.25	39.39	75.25	Godhavn	DTUSpace
							ATU	306.43	67.93	38.19	73.99	Attu	DTUSpace
ZHS	76.38	-69.37	96.59	-74.63	Zhongshan Station	Polar Research Institute of China	STF	309.28	67.02	40.87	72.64	Kangerlussuaq	DTUSpace
ZK1	77.98	-71.93	89.60	-76.23	ZK1	PRIC	SKT	307.10	65.42	37.22	71.43	Maniitsoq	DTUSpace
ZK2	77.02	-74.58	79.22	-79.68	ZK2	PRIC	GHB	308.27	64.17	37.85	69.98	Nuuk	DTUSpace
ZK3	76.96	-77.26	69.12	-77.54	ZK3	PRIC	FHB	310.32	62.00	39.05	67.41	Paamiut	DTUSpace
DMA	77.54	-80.37	54.47	-77.81	Dome A	PRIC	NAQ	314.56	61.16	43.19	65.75	Narssarssuaq	DTUSpace
							BFE	11.67	55.63	89.41	52.09	Brorfelde	DTUSpace
DAV	77.97	-68.58	101.69	-74.77	Davis, Antarctica	Australian Antarctic Division	ROE	8.55	55.17	86.66	51.70	Rømø	DTUSpace
MAW	62.87	-67.60	91.42	-70.52	Mawson, Antarctica	AAD							
CSY	110.53	-66.28	156.79	-8.74	Casey, Antarctica	AAD	NAL	11.93	78.92	110.98	76.26	Ny Ålesund	Tromsø Geophysical Observatory
MCQ	158.95	-54.50	-119.91	-64.48	Macquarie Island	AAD	LYB	15.83	78.20	111.88	75.31	Longyearbyen	Tromsø Geophysical Observatory
							HOP	25.01	76.51	115.01	73.12	Hopen	Tromsø Geophysical Observatory
P01	129.61	-83.86	17.33	-80.34	AGO P1	AGO	BJN	19.00	74.50	107.76	71.52	Bjørnøya	Tromsø Geophysical Observatory
P02	-46.40	-85.70	19.70	-70.20	AGO P2	AGO	NOR	25.79	71.09	108.93	67.87	Nordkapp	Tromsø Geophysical Observatory
P03	28.60	-82.80	40.70	-72.20	AGO P3	AGO	JAN	351.30	70.90	82.93	70.29	Jan Mayen	Tromsø Geophysical Observatory
P04	96.80	-82.00	42.20	-80.30	AGO P4	AGO	SOR	22.22	70.54	106.08	67.40	Sørøya	Tromsø Geophysical Observatory
P05	123.52	-77.20	28.60	-87.10	AGO P5	AGO	TRO	18.94	69.66	102.79	66.69	Tromsø	Tromsø Geophysical Observatory
							AND	16.03	69.30	100.23	66.49	Andenes	Tromsø Geophysical Observatory
SPA	0.00	-90.00	19.56	-74.19	South Pole Station	PENGUIN	DON	12.50	66.11			Dønna	Tromsø Geophysical Observatory
MCM	166.70	-77.90	326.50	-80.00	McMurdo	PENGUIN	RVK	10.99	64.95	93.18	62.28	Rørvik	Tromsø Geophysical Observatory
							DOB	9.11	62.07	90.05	59.32	Dombås	Tromsø Geophysical Observatory
SBA	166.78	-77.85	326.66	-79.91	Scott Base	New Zealand	SOL	4.84	61.08	86.12	58.53	Solund	Tromsø Geophysical Observatory
							KAR	5.24	59.21	85.55	56.43	Karmøy	Tromsø Geophysical Observatory
B03	291.88	-67.57	8.27	-53.14	m67-292	BAS							
B11	336.58	-77.51	30.69	-63.96	m78-337	BAS	IQA	291.48	63.75	15.58	72.21	Iqaluit	CANMOS
B12	335.88	-79.08	29.67	-65.15	m79-336	BAS	LYR	15.83	78.20	111.03	75.64	Longyearbyen	TROMSOE, this from SuperMAG
B14	337.74	-80.89	29.35	-66.70	m81-338	BAS							
B16	347.06	-82.78	30.73	-68.71	m83-347	BAS	YRS	11.90	78.90	110.07	76.38	Yellow River Station	PRIC
B18	336.14	-84.35	26.33	-69.45	m84-336	BAS							
B19	2.06	-85.36	30.41	-71.39	m85-002	BAS	SOD	26.63	67.37	106.80	64.10	Sodankylä	Sodankylä Geophysical Observatory
B21	28.41	-87.00	29.34	-73.53	m87-028	BAS	KEV	27.02	69.75	108.70	66.50	Kevo	Sodankylä Geophysical Observatory
B22	68.17	-86.51	31.00	-75.62	m87-068	BAS	MUO	23.56	68.03	104.70	64.90	Muonio	Sodankylä Geophysical Observatory
B23	316.13	-88.03	20.41	-72.34	m88-316	BAS	UO	27.23	64.52	105.80	61.20	Oulujärvi	Sodankylä Geophysical Observatory
HAL	333.70	-75.60	29.80	-62.20	Halley Bay	BAS							

Conjugate Search coil (induction) magnetometer

pace @

Wirginia Tech

IAGA	GLON	GLAT	MLON	MLAT	STATION-NAME	OPERATORS	ZHS	76.38	-69.37	96.59	-74.63	Zhongshan Station	PRIC
PG5	5.71	-81.96	37.03	-69.51	Antartica	Virginia Tech	YRS	11.90	78.90	110.07	76.38	Yellow River Station	PRIC
PG4	12.25	-83.34	36.17	-70.90	Antartica	Virginia Tech							
PG3	37.62	-84.81	37.95	-73.43	Antartica	Virginia Tech	DAV	77.97	-68.58	101.69	-74.77	Davis, Antarctica	AAD
PG2	57.96	-84.42	39.07	-75.24	Antartica	Virginia Tech	MAW	62.87	-67.60	91.42	-70.52	Mawson, Antarctica	AAD
PG1	77.20	-84.50	33.68	-76.55	Antartica	Virginia Tech	CSY	110.53	-66.28	156.79	-8.74	Casey, Antarctica	AAD
P01	129.61	-83.86	6 17.33	-80.34	AGO P1	AGO	NAL	11.95	78.92	111.25	76.19	Ny Ålesund	UNH
P02	-46.40	-85.70) 19.70	-70.20	AGO P2	AGO	LYR	15.82	78.20	112.08	75.25	Longyearbyen	UNH
P03	28.60	-82.80	40.70	-72.20	AGO P3	AGO	HOR	15.47	76.97	109.16	74.23	Hornsund	UNH
P04	96.80	-82.00	42.20	-80.30	AGO P4	AGO	BAB	14.23	78.07	110.37	75.35	Barentsburg(BBG for IAGA)	UNH
P05	123.52	-77.20	28.60	-87.10	AGO P5	AGO							
P06	130.00	-69.50	215.20	-84.90	AGO P6	AGO	KAP	277.81	49.39	347.60	58.70	Kapuskasing (KAP), Canada	PWIN, VT??
							NAN	298.30	56.50	14.80	65.80	Nain, NL, Canada	PWIN, Augsburg College
HAL	333.70	-75.60	29.80	-62.20) Halley Bay	BAS	GAK	214.78	62.39	268.51	63.6	Gakona (GAK), Alaska	GI-UAF, UNH
MCM	166.70	-77.90	326.50	-80.00) McMurdo	PENGUIN							
SPA	0.00	-90.00) 19.56	-74.19	South Pole Station	PENGUIN	JBS	164.20	74.60	223.50	70.25	Jang Bogo Station	Korean
							VNA	351.70	70.40	81.12	69.59	Neumayer III Station	German
STF	309.28	67.02	40.87	72.64	Kangerlussuaq	DTUSpace							
IQA	291.48	63.75	5 15.58	72.21	Iqaluit	CANMOS							
BBG	14.12	78.09) 110.30	75.40	Barentsburg	Sodankylä Geophysical Observatory							
KIL	20.86	69.02	2 103.30	66.10) Kilpisjärvi	Sodankylä Geophysical Observatory							
IVA	27.28	68.55	5 108.10	65.30) Ivalo	Sodankylä Geophysical Observatory							
SOD	26.39	67.42	2 106.60	64.20) Sodankylä	Sodankylä Geophysical Observatory							
ROV	25.94	66.78	3 105.90	63.60) Rovaniemi	Sodankylä Geophysical Observatory							
OUL	25.90	65.08	3 104.90	61.80	Oulu	Sodankylä Geophysical Observatory							
NUR	24.65	60.51	101.90	57.10) Nurmijärvi	Sodankylä Geophysical Observatory							

Autonomous Adaptive Low-Power Instrument Platform

Data Access

- SPEDAS (Space Physics Environment Data Analysis Software) is a framework, written in IDL, to support loading, plotting, analysis, and integration of data from a number of space- and ground-based observatories, including THEMIS, MMS, GOES, ERG, IUGONET, and most data sets archived at CDAWeb., http://spedas.org/blog/),
- CDAWEB (Coordinated Data Analysis Web, Public data from current and past space physics missions, http://cdaweb.sci.gsfc.nasa.gov/index.html/),
- INTERMAGNET (International Real-time Magnetic Observatory Network), http://www.intermagnet.org/index-eng.php
- SuperMAG (<u>http://supermag.jhuapl.edu</u>)
- Pl's own website, such as http://mist.nianet.org/

Data Access-MIST AAL-PIP Array http://mist.nianet.org/

- Fluxgate Magnetometer (1 Hz)
 - Virginia Tech MIST website (<u>http://mist.nianet.org/</u>)
 - THEMIS database (accessible via SPEDAS software and GUI)
 - NASA SPDF CDAWeb
 - SuperMAG (1 minute)
- Induction Magnetometer (10 Hz)
 - Virginia Tech MIST website
 - Contact us directly for special data requests
- CASES (GPS Receiver)
 - Virginia Tech MIST website
 - We're working on making data available on Madrigal database by end of summer
- HF experiment
 - available on Virginia Tech MIST website

Courtesy of V. Eccles and M. Engebretson

MESO-scale

currents (100's-1000's km) and other phenomena in cusp/auroral zone Equivalent Ionospheric Currents Inferred Field-aligned Currents

>> Nighttime MIEs are highly localized

-- Weygand, 2018

Courtesy of M. Engebretson

MESO-scale

Using many more stations worldwide provides

- -- better timing of substorm onsets
- -- better measures of amplitude
- -- better knowledge of location

SuperMAG AL (SML) uses >100 latitudinally scattered stations.

Future plans and ideas for collaboration

• Current plans

Inter-hemisphere, Satellite - ground-based conjunction 2D conjugate comparisons including Svalbard Extensions to array through collaboration

Community input?
Ideas for collaboration
Data sharing
Deploying new instrumentation

Similar pulsations are found in filtered THEMIS-D, GOES 13, 15, and ground magnetometer observations. The arrival times and number of pulsations seen at different stations and satellites support that the conjugate pulsations are related to the Sudden Impulse (SI) dayside transient event.

2D current system time evolution in both hemispheres

Virginia Tech

enter for Space Science and Engineering Research

bace

 With 2D arrays (e.g., IMAGE) in both hemispheres, it would be possible to resolve temporal and spatial evolution of transient current systems, such as Hot Flow Anomalies

Murr et al., [2002]

Future Plans

- Deploy new instruments at existing and new locations
 - If current NSF proposal to work with PRIC is selected, extend chain to cover a wider range of longitudes conjugate (IGRF) to regions near East Coast of Greenland and Svalbard
 - Submit NSF renewal proposal in 2020
 - Extend chain, if possible, through international collaboration
 - Feedback on most important locations and instruments

Community input?

Ideas for collaboration

Observations: Lidar TIFe Layer, Satellites, SuperDARN, GPS Models: AMIE, SAM, and others Weygand et. al, JGR 2012 (Comparison between SuperDARN flow vectors and equivalent ionospheric currents from ground magnetometer arrays)

- Data sharing and Higher level data product
- Deploying newer and better instrumentation