





### New Methods for Physics-Based Neutral Density

26 June 2018

Eric Sutton Space Environment Branch

Integrity **★** Service **★** Excellence



### **Project Goals & Motivation**



#### Goals:

- Blend data and physics-based I-T model to improve accuracy both where and when data is not available
- Identify the obstacles currently hindering physics-based I-T data assimilation techniques and design new ones

#### Motivation:

- Empirical or climatological I-T models offer limited predictive capabilities
- Physics-based models offer better predictive ability, but significant advances to Data Assimilation techniques are needed first





### **Data Assimilation**

**Different Approaches for Different Systems** 



#### Features of the lonosphere-Thermosphere (I-T) system:

- Highly driven
- Sparsely observed

**Chaotic System** (e.g. tropospheric weather)



Strongly Driven System

(e.g. lonosphere-Thermosphere)



Image credit: S. Codrescu

See the method by <u>S. Codrescu et al. [2018, Space Weather]</u>





### **I-T Response Characteristics**

One example



## Response of the I-T to a step increase in solar irradiance:

- F<sub>10.7</sub> increases from 120 to 180 at t=0
- Neutral density response as observed by a circular, polar satellite orbiting at 400 km altitude
- Density is normalized between two steady-state simulations (F<sub>10.7</sub>=120 and 180)
- The increase in temperature across the globe is shown below







### **I-T Response Characteristics**

One example



## Response of the I-T to a step increase in solar irradiance:

- F<sub>10.7</sub> increases from 120 to 180 at t=0
- Neutral density response as observed by a circular, polar satellite orbiting at 400 km altitude
- Density is normalized between two steady-state simulations (F<sub>10.7</sub>=120 and 180)
- The increase in temperature across the globe is shown below











### **Data Assimilation**

Obstacles



- **1. Driven system:** initial conditions less important than conditions of the solar wind and solar flux
- 2. Sluggish response: thermosphere takes some time to responds to drivers
- **3. Unknown drivers:** solar flux (EUV) and solar wind/magnetosphere/ionosphere coupling are not always well observed





### **Data Assimilation**

New Approach





DISTRIBUTION STATEMENT A.



# Physics-Based I-T Model



#### Solves the 3D neutral equations for:

- Energy
- Momentum
- Continuity
- Comp./chem. (O<sub>2</sub>, O, N<sub>2</sub>, +minor species) and the ionospheric equations for:
- O<sup>+</sup> production/transport/chemistry
- $O_2^+$ , NO<sup>+</sup>,  $N_2^+$ , N<sup>+</sup>, e<sup>-</sup> photochemical equilibrium
- Electric potential
- Ion/elect. Heating

#### http://www.hao.ucar.edu/modeling/tgcm/tie.php

$$\begin{split} \frac{\partial T}{\partial t} &= \frac{ge^z}{p_0 c_p} \frac{\partial}{\partial z} \left( \frac{K_T}{H} \frac{\partial T'}{\partial z} \right) - aT' - \nabla \cdot \nabla T' - w \left( S + \frac{\partial T}{\partial z} + \frac{RT'}{c_p m} \right) + Q'/c_p \\ \frac{\partial u}{\partial t} &= \frac{ge^z}{P_0} \frac{\partial}{\partial z} \left( \frac{\mu}{H} \frac{\partial u}{\partial z} \right) + \left( f + \frac{u}{r} \tan \phi - \lambda_{xy} \right) v \\ &- \lambda_{xx} u - \nabla \cdot \nabla u - w \frac{\partial u}{\partial z} - \frac{1}{r \cos \phi} \frac{\partial \Phi'}{\partial \lambda} + (F_\lambda + \lambda_{xy} v_I + \lambda_{xx} u_I) \\ \frac{\partial v}{\partial t} &= \frac{ge^z}{P_0} \frac{\partial}{\partial z} \left( \frac{\mu}{H} \frac{\partial v}{\partial z} \right) - \left( f + \frac{u}{r} \tan \phi - \lambda_{yx} \right) u \\ &- \lambda_{yy} v - \nabla \cdot \nabla v - w \frac{\partial v}{\partial z} - \frac{1}{r} \frac{\partial \Phi'}{\partial \phi} + (F_\phi + \lambda_{yy} v_I - \lambda_{yx} u_I) \\ \frac{\partial \Phi'}{\partial z} &= R(T_0 + T)/m \qquad \frac{1}{r \cos \phi} \frac{\partial}{\partial \phi} (v \cos \phi) + \frac{1}{r \cos \phi} \frac{\partial u}{\partial \lambda} + e^z \frac{\partial}{\partial z} (e^{-z} w) = 0 \end{split}$$

ELECTRON DENSITY (CM-3) DAY = 303 UT = 2.00 ZP = 2.00 3.0e+06 1.5e+06 1.5e+06 0.0e+00

$$\frac{3}{2}N_{e}k_{B}\frac{\partial T_{e}}{\partial t} = -N_{e}k_{B}T_{e}\nabla\cdot\mathbf{u}_{e} - \frac{3}{2}N_{e}k_{B}\mathbf{u}_{e}\cdot\nabla T_{e} - \nabla\cdot\boldsymbol{q}_{e}\cdot\sum\boldsymbol{Q}_{e} - \sum\boldsymbol{L}_{e}$$

$$\sin^{2}I\frac{\partial}{H\partial Z}\left(\frac{2}{7}\frac{K^{0}}{H}\frac{\partial G}{\partial Z}\right) - \left(\frac{L_{on}+L_{oi}}{T_{e}^{5/2}}\right)G = -L_{on}T_{n} - L_{oi}T_{i} - Q_{e}$$

$$\frac{\partial n}{\partial t} - Q + Ln = -\boldsymbol{\Sigma}\cdot\boldsymbol{n}\underline{Y}$$

$$\underline{Y} = \underline{Y}_{\boldsymbol{\beta}} + \underline{Y}_{\perp}$$

$$\underline{Y}_{\boldsymbol{\beta}} = \left\{\underline{b}\cdot\frac{1}{\nu}\left[\boldsymbol{g}-\frac{1}{\rho_{i}}\boldsymbol{\nabla}\left(P_{i}+P_{e}\right)\right] + \underline{b}\cdot\underline{u}\right\}\underline{b}$$

$$\underline{Y}_{\perp} = \frac{1}{|B|}\underline{E} \times \underline{b}$$

$$\nabla\cdot\boldsymbol{\sigma}\cdot\nabla\Phi = \nabla\cdot\boldsymbol{\sigma}\cdot(\boldsymbol{V}_{n}\times\boldsymbol{B})/c$$

hermosphere

onosphere



## **TIE-GCM vs. IRIDEA**

Day 80-365, 2003



## Validate new approach, IRIDEA, with real-world scenario

- Simulate the I-T <u>without</u> data assimilation
- Simulate the I-T with IRIDEA data assimilation
  - Ingest CHAMP/STAR accelerometer observations at ~400 km
  - Estimate corrections to both solar flux and geomagnetic activity drivers
- Compare output of I-T model with observations of neutral density from CHAMP

#### Without Data Assimilation



IRIDEA: Iterative Re-Initialization, Driver Estimation, and Assimilation



## TIE-GCM vs. IRIDEA

Day 80-365, 2003



## Validate new approach, IRIDEA, with real-world scenario

- Simulate the I-T <u>without</u> data assimilation
- Simulate the I-T with IRIDEA data assimilation
  - Ingest CHAMP/STAR accelerometer observations at ~400 km
  - Estimate corrections to both solar flux and geomagnetic activity drivers
- Compare output of I-T model with observations of neutral density from CHAMP

#### With IRIDEA Data Assimilation





## TIE-GCM vs. IRIDEA

Day 80-365, 2003



## Validate new approach, IRIDEA, with real-world scenario

- Simulate the I-T <u>without</u> data assimilation
- Simulate the I-T with IRIDEA data assimilation
  - Ingest CHAMP/STAR accelerometer observations at ~400 km
  - Estimate corrections to both solar flux and geomagnetic activity drivers
- Compare output of I-T model with observations of neutral density from GRACE at ~500 km and separated in local time from CHAMP

#### With IRIDEA Data Assimilation



IRIDEA: Iterative Re-Initialization, Driver Estimation, and Assimilation

**Observed vs. Estimated Drivers** 

### The estimated F<sub>10.7</sub> time series resembles the actual

- Solar rotational modulation is evident
- But, the spikes are probably not representative of EUV variations

### The estimated Kp time series

#### somewhat resembles the actual

- Better correlation when a daily runningmaximum filter is applied
- Does TIE-GCM have a problem cooling down or is correlation of the estimated drivers causing this?

### drivers causing this f How do we better disentangle solar vs. geomagnetic influences?

- Improve data coverage?
- Incorporate data types with better information content?
- Incorporate actual drivers into the mix?









13







### A new data assimilation technique has been developed for I-T physics-based models:

- Accounts for the driven I-T system with response time-scales of approximately 1 day
- Able to accurately specify neutral densities in both quiet and disturbed times for the first time

#### **Questions:**

- How do we best incorporate actual drivers (e.g., EUV vs. F10.7)?
- How do we best incorporate forecasts of drivers?
- How do we best disentangle solar irradiance vs. geomagnetic driving?
- What measurements would be more ideal for driving this type of a technique?
- Are there analogs throughout Geospace?



Space Weather RESEARCH ARTICLE

A new method of physics-based data assimilation for the quiet and disturbed thermosphere

10.1002/2017SW001785

This work was sponsored by the Air Force Office of Scientific Research. Travel was paid for by the NASA LWS Institute on Neutral Density Nowcasting.





### **Backup Slides**





DISTRIBUTION STATEMENT A.



#### Assimilation and Validation Data Sets:

- **Ingested data:** neutral densities measured onboard CHAMP satellite
- **Independent Validation Data:** neutral densities measured onboard GRACE-A satellite
- GRACE-A is ~90 km higher than CHAMP during the interval
- Local times align early in the interval, diverging near the end of the interval with a difference of ~4 hours
- Both Satellite orbits are circular and near-polar

**Daily-Mean Altitude** 550 Height (km) 420





## **Model Performance Metrics**

Day 80-365, 2003







## Model Performance Metrics

2003







DISTRIBUTION STATEMENT A.



Going Forward...

Location-Dependent Errors



# Orbit-averaged model output is greatly improved, but how do we minimize the remaining location-dependent errors?



#### Need to assess contributions from:

- Lower atmosphere waves and tides
- Lower boundary considerations: TIE-GCM vs. TIME-GCM vs. WACCM-X
- Viscous and ion drag (and many other model parameters)

