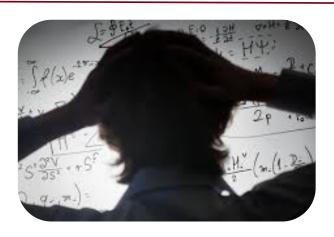
Reduced-order modeling for data assimilation in geospace applications

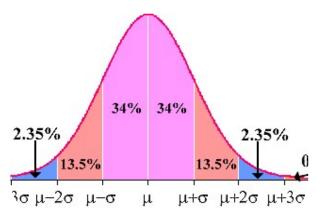
Piyush M. Mehta* and Richard Linares
Department of Aerospace Engineering and Mechanics
University of Minnesota

*Department of Mechanical and Aerospace Engineering West Virginia University

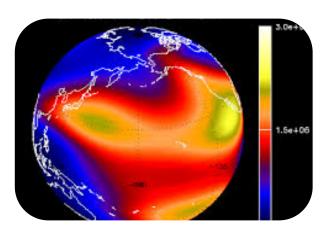
Paradigms of (Geospace) Science



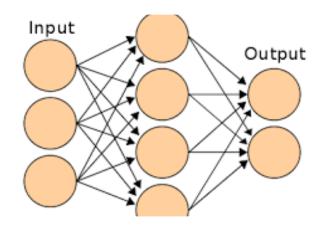
Theoretical



Empirical



Computational



Data-Driven

Case Study: Thermosphere-Ionosphere

Theoretical

- Navier-Stokes (NS)
- Based in Physical Laws
- (NS + Maxwell = MHD)
- No closed-form solutions: Numerical Solution Techniques

Empirical Models

- Empirical correlations between driver and state
- Simple and effective
- Poor prediction capabilities

Computational

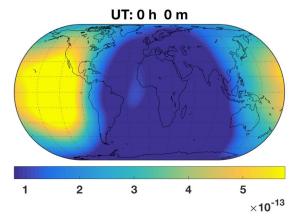
- Physical models with high fidelity
- Dynamical formulation with good potential for prediction
- Complexity

Data-Driven

- Union of statistics, applied mathematics, information and computer science
- Can be powerful with good methodology
- Non-trivial for extracting scientific information

Reduced Order Modeling methodology

- Prediction or Forecast is the holy grail!!
- Not ideal to abandon heritage models for a data-only (blackbox) methodology
 - Embed within them a wealth of knowledge
 - Dynamic (physical) models have inherent predictive capabilities



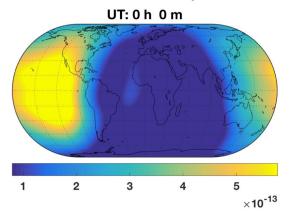
Chaos due to geomagnetic activity

 Use a dynamic systems formulation to address Next generation CEDAR science

Combines the paradigms for efficient and effective prediction and science extraction

Complexity

- Simplified model through efficient data compression
 - New "Hermitian Space Dynamic Mode Decomposition method" (Space Weather, 2018) for compressing large amounts of data
 - Preserve predictive capabilities



12 years of TIE-GCM simulations

$$\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k$$

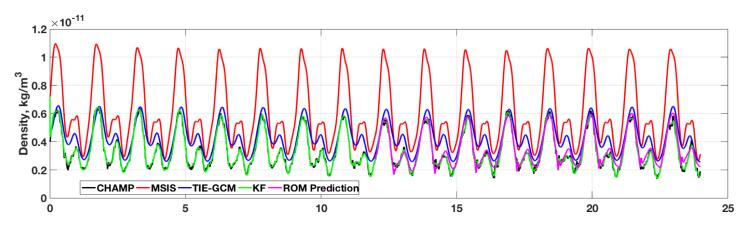
- Dimensionality Reduction by projecting onto orthogonal subspace
 - The large number of degrees of freedom can be reduced using set of coherent structures or proper orthogonal decomposition (POD modes or EOFs)

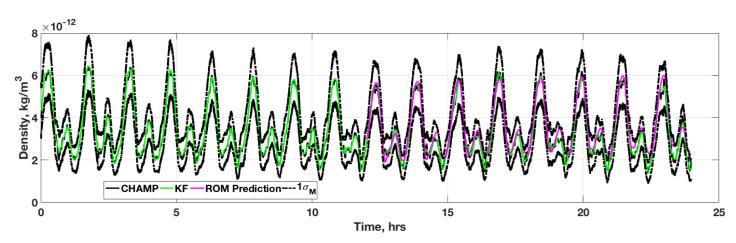
$$\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k \qquad \mathbf{z} = U\mathbf{x}$$

$$\mathbf{z}_{k+1} = \widetilde{A}\mathbf{z}_k + \widetilde{B}\mathbf{u}_k$$

Complexity

- The methodology also provides simplified framework for data assimilation
 - A new transformative framework for data assimilation and calibration of physical ionosphere-thermosphere models (Space Weather, 2018)

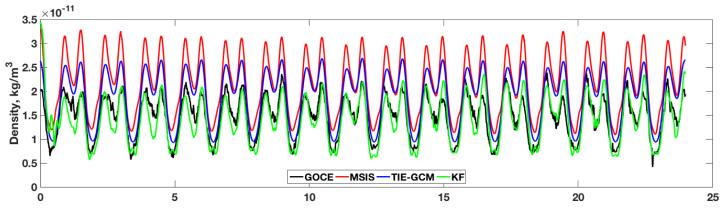


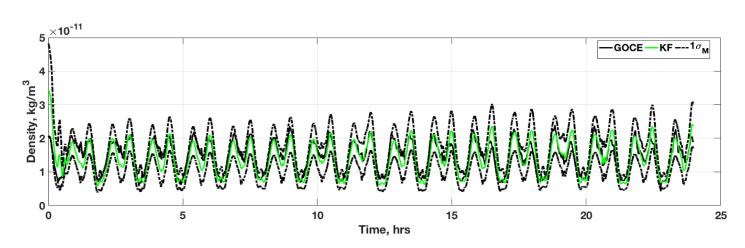


- Model Error
- Time-Step
- Initialization
- Calibration

Complexity

- The methodology also provides simplified framework for data assimilation
 - A new transformative framework for data assimilation and calibration of physical ionosphere-thermosphere models (Space Weather, 2018)



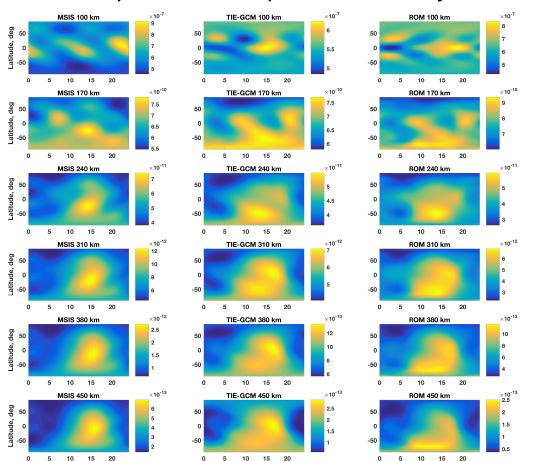


Science Insights

 The methodology also has promising potential for providing insights into the dynamics and coupling

Local Time, hrs

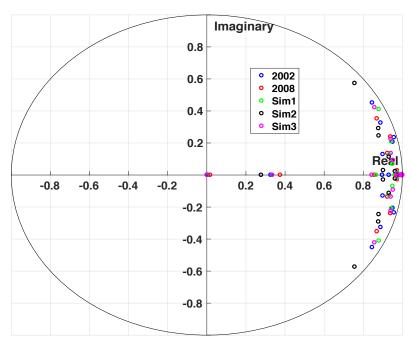
- Fine-tune the processes
- Spectral decomposition of the dynamics



Local Time, hrs

Local Time, hrs

 $eig(\mathbf{A})$ or $eig(\widetilde{\mathbf{A}})$



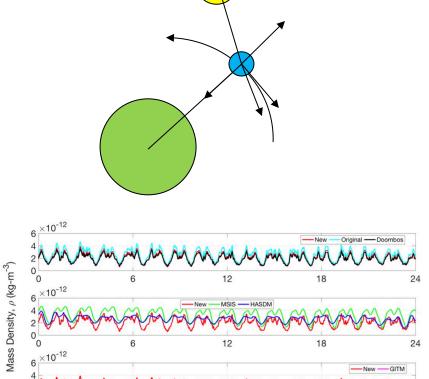
Data Quality and Consistency

$$a_{drag} = a_{total} - a_{grav} - a_{rad}$$

Drag
Acceleration
Measurements

Density Estimates

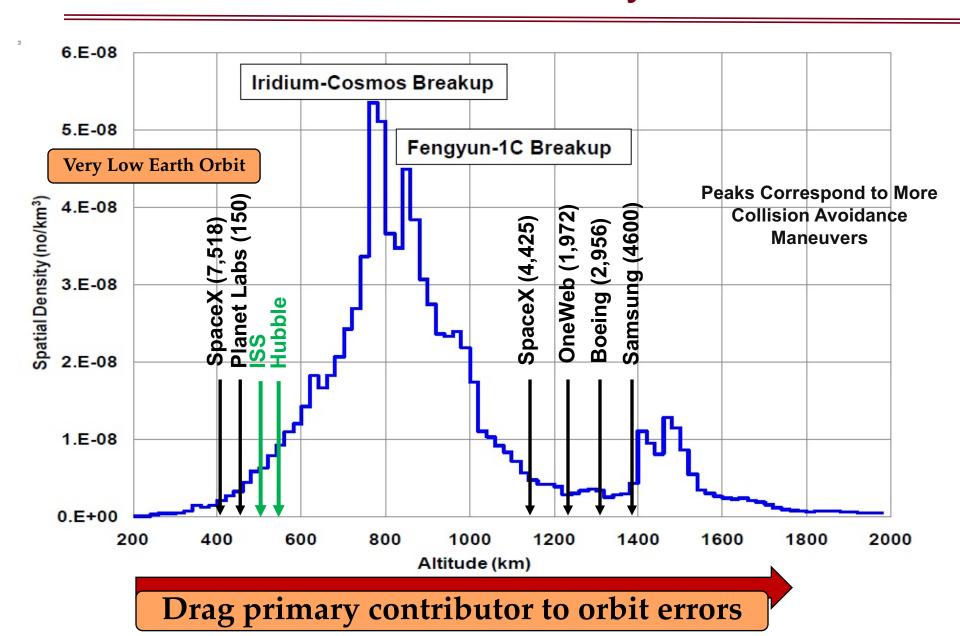
Composition and Temperature from (empirical model)



Time since 00:00:00, Aug 28, 2009 (hours)

The methodology also has the potential to provide selfconsistent data by estimating the force model parameters in a dynamic formulation.

Data Availability



Thank you!!