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Paradigms of (Geospace) Science

Theoretical Empirical

Computational Data-Driven



Case Study: Thermosphere-Ionosphere

Theoretical
• Navier-Stokes (NS)
• Based in Physical Laws
• (NS + Maxwell = MHD)
• No closed-form solutions: Numerical 

Solution Techniques

Empirical Models
• Empirical correlations between 

driver and state
• Simple and effective
• Poor prediction capabilities

Computational
• Physical models with high fidelity
• Dynamical formulation with good 

potential for prediction
• Complexity

Data-Driven
• Union of statistics, applied 

mathematics, information and 
computer science

• Can be powerful with good 
methodology

• Non-trivial for extracting scientific 
information



• Prediction or Forecast is the holy grail!!
• Not ideal to abandon heritage models for a data-only (black-

box) methodology
– Embed within them a wealth of knowledge
– Dynamic (physical) models have inherent predictive capabilities

• Use a dynamic systems formulation to address Next generation 
CEDAR science

Reduced Order Modeling methodology

Combines the paradigms for efficient and effective 
prediction and science extraction

Chaos due to geomagnetic activity



• Simplified model through efficient data compression
– New “Hermitian Space - Dynamic Mode Decomposition method” (Space 

Weather, 2018) for compressing large amounts of data
– Preserve predictive capabilities

• Dimensionality Reduction by projecting onto orthogonal 
subspace
– The large number of degrees of freedom can be reduced using set of 

coherent structures or proper orthogonal decomposition (POD modes or 
EOFs)

Complexity
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• The methodology also provides simplified framework for 
data assimilation 
– A new transformative framework for data assimilation and calibration of 

physical ionosphere-thermosphere models (Space Weather, 2018)

Complexity

• Model Error
• Time-Step
• Initialization
• Calibration



• The methodology also provides simplified framework for 
data assimilation 
– A new transformative framework for data assimilation and calibration of 

physical ionosphere-thermosphere models (Space Weather, 2018)

Complexity



• The methodology also has promising potential for providing 
insights into the dynamics and coupling 
– Fine-tune the processes
– Spectral decomposition of the dynamics

Science Insights
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Data Quality and Consistency

The methodology also has the potential to provide self-
consistent data by estimating the force model 

parameters in a dynamic formulation.

Drag 
Acceleration 

Measurements

Composition and 
Temperature from 
(empirical model)

Density 
Estimates
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Data Availability
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Drag primary contributor to orbit errors

Very Low Earth Orbit



Thank you!!


