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Introduction
❖ The  coupling  between  the  lower  and  the  upper 

atmosphere  involves  direct  transport  of  chemical 
constituents, momentum flux and energy.

❖ Mesosphere  and  thermosphere  dominated  by  very 
different physics - neutral vs plasma dynamics.

❖ Coupling mechanisms :  Tides,  Planetary waves,  Gravity 
waves, Turbulence

❖ Difficult to understand because of complexity and lack of 
observations.



What is the reason for this seasonal and semi-annual variation ?

MSIS O/N2

Fuller Rowell, 1998

MOTIVATION



Mass Densities- GITM vs GOCE
2010



Perlongo et al., 2018GITM vs TIE-GCM TEC for 2010

a) Lower boundary of GITM is incorrect.

b) Eddy diffusion coefficient in GITM is incorrect.



Investigating Lower Boundary

Can we use WACCM-X ?

At the lower boundary,
MSIS vs WACCM-X
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Global Ionosphere Thermosphere Model
❖ First-principles model that simulate the thermosphere and ionosphere by solving for 

density, momentum and energy self-consistently. [Ridley et al., 2006]

❖ GITM uses a 3-D spherical grid that can be stretched in both latitude and altitude.

❖ Uses an altitude-based grid and  does not assume a hydrostatic solution

❖ Can be run in 1D or 3D modes.

❖ Allows different models of high latitude electric fields, auroral particle precipitation, solar 
EUV inputs, particle energy deposition

❖ The magnetic field can be represented by either ideal dipole magnetic field or a realistic 
APEX magnetic field.

❖ Initial state can be set either by MSIS/IRI, user inputs or from a previous run.

❖ MSIS is an empirical model that relates the neutral densities and temperature to the 
integrated solar flux approximation (F10.7) and activity level (Ap). It is a  spherical 
harmonic fit to many different satellite and remote observations.

❖ Solves explicitly for O, O2, N(2D), N(2P), N(4S), N2, NO, H, He and ion species O+(4S), 
O+(2D), O+(2P), O2+, N+, N2+, NO+, H+, He+



Whole Atmosphere Community Climate Model
❖ WACCM-X : Thermosphere and Ionosphere extension to WACCM (~upto 130 km) 

with model top boundary between 500-700 km.

❖ Built upon Community Atmosphere Model (CAM) which that goes upto ~40 km.

❖ Has the option to constrain the tropospheric and stratospheric by reanalysis 
toward MERRA - ‘Specified dynamics’.

❖ Resolution : 1.9 degree in latitude and 2.5 degree in longitude.

❖ Vertical resolution of 1/4 scale height above 1 hPa, with 125 vertical levels.

❖ Gravity wave parameterization : Linear saturation theory (Lindzen 1981)

❖ The chemistry module is interactive with the dynamics through transport and 
exothermic heating - derived from a 3D model MOZART.

❖ Production and loss of electrons and 5 ions - O+, O2+, NO+, N+, N2+

❖ Heating due to energetic photoelectrons calculated using Solomon and Qian [2005]



Simulations
• GITM Resolution : 2 degrees Latitude and 4 degrees Longitude
• Vertical resolution : <3 km in the lower thermosphere and. >10 km in the upper thermosphere 

(1/3rd of the scale height)
Model Inputs :

• Lower Boundary : MSIS, HWM or WACCM-X.
• High Latitude Potential: Weimer05 [Weimer 1995]
• Auroral Power : Hemispheric Power Index from NOAA (uses POES and Fuller Rowell Evans 

[1987])
• Solar wind data : ACE (Advanced Composition Explorer Satellite) [Chamberlin et al. 2007]
• Solar EUV Flux : FISM (Flare Irradiance Spectral Model) 

We couple GITM with WACCM -X at the lower boundary and compare it with the default 
MSIS driven GITM. O, O2, N2, N, NO, T, U, V are coupled.
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Results
April June

• WACCM-X has smaller tidal amplitudes as compared to MSIS - gravity wave parameterization
• Larger Temperatures.
• Smaller scale variabilities in WACCM-X.
• Excessive dissipative heating from gravity wave parameterization might be responsible for 

smaller tidal amplitudes, excessive heating. [Liu et al., 2010]
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Results : Vertical Velocity

• The vertical velocity for MSIS also shows a tidal structure which is missing from WACCM-X.

April

June



Results : O/N2

• At southern polar latitudes, WACCM-X and MSIS driven runs match well
 

• The tidal structures from MSIS maps into the upper thermosphere.



Results : Total Electron Content

• The TEC between the two 
simulations is matches well at high 
latitudes.

• The difference between EIA of the 
two simulations tells us about the 
influence of tides on the TEC.



MSIS driven vs WACCM-X driven GITM vs GPS TEC



Sensitivity studies for Kzz



Latitudinal profile in Kzz

113.4 km

He T
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Summary
❖The lower boundary does have a substantial effect on the IT system.
❖When using MSIS vs WACCM-X lower boundary, we find the highest change 

during solstices and at lower latitudes.
❖This  change  in  the  lower  boundary  might  not  be  enough  to  solve  the 

discrepancies with observations in GPS TEC observations and neutral densities.
❖However,  comparison of  MSIS  and WACCM-X atomic  oxygen at  the  lower 

boundary of GITM does indicate that the thermospheric semi-annual oscillation 
most probably has its source in the lower atmosphere.

❖We are also performing sensitivity analysis to understand the effect of eddy 
diffusion on the thermosphere. The temperature shows a larger sensitivity than 
the mixing and this needs to be investigated further.
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