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Coupled Thermosphere Ionosphere Plasmasphere

Electrodynamics Model (CTIPe)

» Global thermosphere 80 - 500 km, solves momentum, energy, composition, etc. Vx, W, Vz, Tn, O,
02, N2, ... Neutral winds, temperatures and compositions are solved self consistently with the
lonosphere (Fuller-Rowell et al., 1996);

« High latitude ionosphere 80 -10,000 km, solves continuity, momentum, energy, etc. O+, H+, O2+,
NO+, N2+, N+, Vi, T, .... (open flux tubes);

 Plasmasphere, and mid and low latitude ionosphere, closed
flux tubes to allow for plasma to be transported between
hemispheres (Millward et al., 1996) ;

 Self-consistent electrodynamics (electrodynamics at mid
and low latitudes is solved using conductivities from the
lonospheric model and neutral winds from the neutral
atmosphere code);

« Forcing: solar UV and EUV, Weimer electric field,
TIROS/NOAA auroral precipitation, tidal forcing;

 Resolution: lat 2°, lon 18°, 15 pressure levels (from a lower
boundary of 1 Pa at 80 km to more than 500 km altitude).




CTIPe Magnetospheric Forcing
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Plasma convection:
patterns driven by
Weimer 2005 using
ACE/DSCOVR data
(IMF, SW vel., SW
den.), 1 min. input
(SWPC database).
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Particle precipitation:
patterns driven either by
power index
TIROS/NOAA auroral
precipitation or derived
from ACE solar wind
and IMF data.
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Neutral density [kg/m?3]

2007 CHAMP/CTIPe Orbit Average Comparisons

CHAMP data provided by Eric Sutton
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Some of these mechanisms were not included in this
CTIPe model version, and it is possible that a
combination of these effects (and others listed by
Qian et al., 2009) could be responsible for the semi-
annual variation in density.

Possible Mechanisms for Semi-Annual
\Variation:

 Seasonal variation in eddy diffusivity in the
upper mesosphere and lower thermosphere
regions due to gravity wave breaking (Qian et al.,
2009)

» Thermospheric spoon mechanism associated
with the global scale interhemispheric circulation
at solstice (Fuller-Rowell, 1998)

« Asymmetry In conductivity distribution at
solstice due to Inequality of solar radiation
between hemispheres (e.g, Lyatsky et al., 2001)

« Semi-annual variation in geomagnetic activity
peaking at equinoxes (Russell and McPherron,
1973)

e Conduction mode  oscillation of the
thermosphere forced by the semi-annually
varying Joule heating at high latitudes
(Walterscheid,1982)




Neutral density [kg/m?]

2007 CHAMP/CTIPe Orbit Average Comparisons (cont’d)
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« Electric fields can directly change Joule heating by varying the ion convection at high-latitudes (Deng
and Ridley, 2007). An increase in Joule heating raises the neutral temperature, which enhances the neutral
density at constant heights.

« Electric field variability changes the distribution of Joule heating significantly, and can introduce
Interhemispheric asymmetries (Codrescu et al., 1995, 2000).

* Previous studies have identified a significant seasonal dependence in the magnitudes of small-scale
electric field variability in DE-2 (e.g., Golovchanskaya, 2007; Matsuo and Richmond, 2008) and
SuperDARN data (Cousins and Shepherd, 2012).




2005-2009 CHAMP/CTIPe Orbit Average Comparisons
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CHAMP data version 2.3 provided by Eric Sutton




Whole Atmosphere Model (WAM)

Akmaev et al., 2008; Fuller-Rowell et al., 2011; Fang et al., 2013.
Global seamless whole atmosphere model (WAM) 0-600 km, 0.25 scale

height, 2° x 2° lat/long, T62, hydrostatic, 150 levels, 10-fold extension of
Global Forecasting System (GFS) US weather model.

O, chemistry and transport

Radiative heating and cooling
Cloud physics and hydrology
Sea surface temperature field and surface exchange processes
Orographic gravity waves parameterization

Diffusive separation, ion drag, Joule heating, etc.
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Impact of Lower Atmospheric Forcing
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2012 GOCE/CTIPe Comparisons: Along Orbit vs. Orbit Averaged
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GOCE data provided by Eelco Doornbos and Sean Bruinsma




WAM-IPE

Tim Fuller-Rowell (CIRES/University of Colorado and NOAA/SWPC), Rashid Akmaev, Naomi Maruyama,
Houjun Wang, Tzu-Wei Fang, Joe Schoonover, Zhuxiao LI, George Millward, Mariangel Fedrizzi, Valery
Yudin, Dominic Fuller-Rowell, Rodney Viereck, Phil Richards, Arthur Richmond, Mark Iredell, Adam Kubaryk,
Weiyu Yang, Bob Oehmke, Cecelia Deluca, Raffaele Montuoro, and Jacques Middlecoff

« WAM-IPE is running in real-time in a test operational mode with one-way coupling.

* Includes WDAS - the GSI physics-based data assimilation system in the lower atmosphere
(below 60 km) using the NWS-NCEP 6-hour assimilation cycle.

* The system launches a new WAM-IPE run from the forecast to bring the system closer to the
current time driven by the current space weather solar wind drivers from DSCOVR.

« System appears robust, currently validating, improving transport and electrodynamics, and
evaluating Geospace model storm drivers.

* In the future: 2-way coupling, expand the GSI data assimilation to 100 km, improve gravity
wave parameterization, FVV3 non-hydrostatic core and higher resolution, shorter assimilation
cycle, thermosphere/ionosphere data assimilation in upper levels with GOLD and COSMIC-
[1, drive irregularity model, O2R opportunities.

Tim Fuller-Rowell, SWPC Space Weather Workshop 2018




