ROCKET STUDIES OF THE X-RAY FLUX IN THE HIGH LATITUDE MESOSPHERE AND STRATOSPHERE

Edgar A. Bering, III University of Houston James L. Roeder The Aerospace Corp.

OUTLINE OF TALK

- Observation Methods
- Theory
- Thick Target Bremsstrahlung
- Radiation Transport
- Microbursts
- Wave Induced Particle Precipitation

INTRODUCTION

- Accelerated charged particles radiate EM radiation
- Energetic charged particles should radiate when stopping in matter
- Intensity is proportional to the square of the acceleration
- Thus $I \propto Z^2 z^4 e^6 / M^2$
- Total bremsstrahlung intensity varies as the square of the atomic number of the target
- Intensity varies inversely as the square of the mass of the incident particle
- Only electrons produce significant emissions.

OBSERVATION METHODS

- Energy ranges
 - Historical 5-250 keV
 - Maxis, Minis, BARREL 1-10 MeV
- Vehicles
 - Stratospheric Balloons (32-35 km)
 - Parachuted Sounding Rockets
 - Ballistic Sounding Rockets
 - Satellites
- Detectors
 - Nal(Th) Scintillation Counters
 - Multi-wire gas proportional counters

Parachuted Rockets THE INDEX PAYLOAD

Payload Sketch

SuperArcas w INDEX at Siple

INDEX

INDEX IN FLIGHT

INDEX, WSNMR, 1974

ARAKS, Kergulen, 1975

INDEX DATA

ARAKS

SUPER ARCAS 15.130

X-RAYS, 10SEC AVE

Fig. 1. Ten second averages of the X ray fluxes in photons/s as measured by 15.130 UE in four integral energy channels, >5, >15, >30, and >60 keV. Data are plotted as a function of UT beginning at launch and continuing to the end of recording. The geometric factor of all of the UH detectors used at Kerguelen was $10.5 \text{ cm}^3 \text{ sr.}$

Siple

THEORY

- Averaged over All Collisions, QM and Classical Cross Sections Are Same Order
- At auroral energies, emissions are isotropic.
- Emission spectrum cuts off at energy of incoming electrons
- Fundamental theory done for monoenergetic electrons, thin targets

THICK TARGET BREMSSTRAHLUNG

- Usual Case in Laboratory and Astrophysical Situations
- Computed as a Superposition of Thin Target Curves
- Spectral Distribution
- Total Bremsstrahlung Energy

 $dI = const Z(v_{max} - v) dv$ $I = kZE^{2}$ incoming electron flux $\frac{dN(E)}{d} = N_0 e^{-E/E_0}$ dEX-ray spectrum will be $\frac{dN(E)}{dE} = 2kZN_0 \frac{\overline{E_0^2 e^{-E/E_0}}}{E_0}$ Z = 7.22

estimate $2kZ = 5.8 \times 10^{-6}$ to 1.6×10^{-5}

RADIATION TRANSPORT

- Evaluating k from Thick Target Bremsstrahlung [Vij et al., 1975, 1980]
- Validating Transport Codes [Bering et al., 1980]
- Solving the Inverse Problem [Benbrook et al., 1983; Gorney et al. 1986]

EVALUATING K

Fig. 5a. A comparison of the raw measured X ray differential energy flux at a depth of 0.175 g/cm^2 with the X ray flux predicted by various workers on the basis of the measured F region energetic electron spectrum. The curves shown have been provided by J. G. Luhmann, S. Seltzer, and M. Walt. The background limit due to phototube noise is also shown.

TRANSPORT CODES

SOLVING THE INVERSE PROBLEM

SOLVING THE INVERSE PROBLEM

	Electron Spectrum	X Ray Spectrum	x²
Case 1	$\frac{dN_e}{dE} = e^{A+Bln E}$	$\frac{dN_{X}}{dE} = e^{C+D\ln E}$	83
	$A = 21.5 \pm 1.2$ $B = -4.29 \pm 1.22$	$C = 1.47 \pm 0.15$ $D = -1.06 \pm 0.05$	
Case 2	$\frac{dN_e}{dE} = e^{A+Bln E}$	$\frac{dN_X}{dE} = e^{C+DE}$	100
	$A = 16.6 \pm 0.68 \\ B = -3.37 \pm 0.12$	$C = 0.820 \pm 0.063$ $D = -0.0398 \pm 0.0023$	
Case 3	$\frac{dN_e}{dE} = e^{A+BE}$	$\frac{dN_{X}}{dE} = e^{C+Dln E}$	95
	A = 2.07±0.25 B -0.0168±.0010	$C = 1.39 \pm 0.14$ $D = -1.02 \pm 0.04$	
Case 4	$\frac{dN_e}{dE} = e^{A+BE}$	$\frac{dN_{X}}{dE} = e^{C+DE}$	122
	$A = 0.92 \pm 0.13$ $B = -0.0113 \pm 0.005$	$C = -0.82 \pm 0.06$ $D = -0.0387 \pm 0.0022$	

SOLVING THE INVERSE PROBLEM

Fig. 9. Fitted X ray spectra from cases 1 and 2 of Table 1. Also shown are the calculated bremsstrahlung X ray spectra produced by the electron spectra of cases 1 and 3 and the galactic diffuse X ray background [Peterson et al., 1972].

MICROBURSTS WAVE PARTICLE INTERACTIONS

ш

EL.

COUNTING

CONCLUSIONS

- The Earth and the aurora are X-ray emitters
- X-ray Bremsstrahlung emissions from the aurora are:
 - Quantitatively Well Understood
 - Useful Remote Sensing tool for auroral physucs
- Can address:
 - Active Experiments
 - Wace Particle Interactions
 - Loss Cone Studies
 - Pitch Angle Diffusion
- Need Affordable Imagers
 - Balloon
 - Parachuted Rocket