Alfvén Dynamics in High-Latitude IT Heating

Alfvén Dynamics in High-Latitude IT Heating

Wave impedance measured in the *F*-region by DE-2

Ionospheric profiles for Aflvén wave propagation

Alfvén wave propagation in a heightresolved ionosphere (*Lysak*, 1999)

- Alfvén wave is launched from 30000 km
- Driven for 1/2 wave period: 0.5 s
- Reflected power is removed by an absorbing layer at 10000 km

Normalized Alfvénic Heating Rates

Reflected and Absorbed Alfvénic Power

 \approx 1 km "cutoff" wavelength of CHAMP small-scale, field-aligned currents

Cumulative Heating from Impulsive Alfvénic Energy Deposition

Stochastic heating in cusp

- Alfvén power in: $\langle S_{\parallel} \rangle \approx 1 \text{ mW/m}^2$
- Neutral wind: $u_n = 200 \text{ m/s}$
- Width of heating region: 200 km
- Duty cycle: 50% intermittency
- *F*-region heating: **2** × **10**⁻⁸ W/m³

Neubert and Christiansen 2003

Comparable to Zhang et al. (2015) Brinkman et al. (2016)

Effects of soft precipitation on σ_P have not been included

2017.06.21

Thermospheric density anomalies at 400 km altitude

CHAMP

Geomagnetic coordinates

Liu et al. 2005

Global simulation (LFM) model streamlines

 \Rightarrow Anomalies straddle dayside (cusp) and nightside convection throats

 \Rightarrow Anomalies are strongly controlled by magnetic geometry

Effects of dynamic (Alfvénic) SSFACs during anomalies

CHAMP | 400 km altitude

Alfvénic field-aligned currents are prevalent in the cusp region.

How does energy deposition by Alfvénic SSFACs differ from that of quasi-static SSFACs?

Ionospheric reflection of small-scale Alfvén waves

Kilometer-scale (in λ_{\perp}) waves are almost fully absorbed.

Larger scale waves are reflected and trapped.

Lessard and Knudsen 2001