Eddy available energy budget in the high-latitude lower thermosphere

Young-Sil Kwak¹ and Arthur Richmond²

¹Korea Astronomy & Space Science Institute, South Korea ²National Center for Atmospheric Research, USA

I-T Processes in the High Latitude

Studies on physical mechanisms controlling high-latitude lower thermospheric winds

- Walterscheid & Brinkman [2003], and references therein
 Analyses of high-latitude thermospheric wind dynamics based on theoretical and numerical models
- Kwak & Richmond [2007]
 Analyses of the momentum forces acting on the high-latitude lower thermospheric wind system below 170 km, using NCAR TIE-GCM
- Kwak, Richmond, & Roble [2007]
 Study on the dependence of the high-latitude lower thermospheric momentum forcing on the IMF direction
- Kwak & Richmond [2014]
 Systematic analyses of the horizontal divergence and the vertical component of vorticity for the high-latitude lower thermospheric wind field
- Kwak & Richmond [2017]
 Study on the relative contributions of momentum forcing and heating to high-latitude lower thermospheric winds

Thermospheric Winds in the High Latitude

WINDII: Wind Imaging Interferometer on the UARS

TIEGCM: Thermosphere
Ionosphere
Electrodynamics
General
Circulation
Model

Only part of the energy of the thermospheric gas is available for driving dynamics

[Kwak and Richmond, 2007]

Eddy Available Energy

Eddy Available Energy (EAE)

- = Eddy Kinetic Energy (EKE)
 - + Eddy Available Potential Energy (EAPE)

We evaluate the budgets of EAE production, transport, and loss under steady-state forcing of the high-latitude lower thermosphere by using NCAR TIE-GCM.

Eddy Available Energy Budget (1)

Eddy Available Energy (EAE) = Eddy Kinetic Energy (EKE,
$$\varepsilon_k = \frac{\vec{v}^2}{2}$$

+ Eddy Available Potential Energy (EAPE,
$$\varepsilon_p \equiv \frac{\xi' - \xi_r \ln(\xi/\xi_r)}{\kappa_r \zeta}$$
)

Eddy Kinetic Energy Budget

Horizontal flux convergence

vertical flux convergence

conversion from ε_p

Ion-drag generation or dissipation

Eddy Available Energy Budget (2)

Eddy Available Energy (EAE) = Eddy Kinetic Energy (EKE,
$$\varepsilon_k = \frac{\vec{v}^2}{2}$$
)

+ Eddy Available Potential Energy (EAPE,
$$\varepsilon_p \equiv \frac{\xi' - \xi_r \ln(\xi/\xi_r)}{\kappa_r \zeta}$$
)

Eddy Available Potential Energy Budget

$$\frac{\partial \varepsilon_p}{\partial t} = (-\vec{v} \cdot \nabla \varepsilon_p - w \frac{\partial \varepsilon_p}{\partial z}) (-w\xi) \left(\frac{\kappa \xi'}{\kappa_r \zeta \xi} \left[Q - \xi \frac{D\kappa^{-1}}{Dt} \right] + w \left[\varepsilon_p \frac{d}{dz} \ln \left(\frac{\xi_r}{\kappa_r \zeta} \right) - \frac{\kappa' \xi'}{\kappa_r \zeta} \right] \right)$$
advection
conversion
to ε_k

In the high-latitude thermosphere, Eddy Kinetic Energy

- is generated primarily where the ion-drag force associated with plasma convection accelerates the neutral gas.
- is destroyed primarily where the ion-drag force opposes the wind.

Eddy Available Potential Energy

Eddy Available Potential Energy Budget

In the high-latitude thermosphere, Eddy Available Potential Energy

- is generated primarily where Joule heat is deposited in regions of elevated temperatures.

Vertical Velocity

(W/kg

18

12

123 km

Joule Heating

123 km

 $(x10^{-1} \text{ m/s})$

 $(RT/m)-(RT_r/m_r)$

 $(x10^2 J/kg)$

120

-120

Eddy Kinetic Energy Budget

Eddy Kinetic Energy

Eddy Available Potential Energy

Eddy Available Potential Energy Budget

- In the high-latitude thermosphere, drag from convecting ions is generally more important than Joule heating for generating dynamical energy, although Joule heating can play a more significant role for impulsive forcing;
- transport of eddy available energy significantly affects the budget;
- energy conversion between kinetic and available-potential forms constitutes an important part of their budgets.

