3D ionospheric electrodynamics and equatorial space-weather forecasting D. L. Hysell

IN PROPERTY AND INCOME.

Earth and Atmospheric Sciences, Cornell University

-US. 1116

June, 2017

80 years of equatorial spread F!

Booker and Wells, 1938; Woodman and La Hoz, 1976

outline

Jicamarca campaigns - http://jro.igp.gob.pe

Dec. 17–21, 2012 $(N_e, T_e, T_i, \mathbf{v}_{\perp} \text{ profiles} + \text{RTI})$ Apr. 11–16, 2013 (added FPI winds) Sep. 16–Oct. 3, 2013 (added widefield imaging) May 5–9, 2014 (added HF beacons) Nov. 24- 28, 2014 (C/NOFS) Dec. 15–22, 2014 Feb. 9–15, 2015 Mar. 23–27, 2015 Aug. 25–28, 2015 Dec. 9–13, 2015

3D DNS simulations

Initialization and forcing ESF event recovery

HF beacons

Regional ionospheric specification

Forecast improvement

North Quarter				
4/2	4/2	5/3	5/3	
4/2	5/3	5/3	2/4	
5/3	5/3	2/4	2/4	
5/3	2/4	2/4	5/3	
West Quarter				
2/4	5/4	3/5	2/5	
3/3	2/3	4/4	3/4	
4/5	3/5	5/2	4/2	
F	4/4	G 2/5	5/5	

East Quarter				
2/2	5/2	3/3	A 2/3	
3/5	2/5	B 4/2	C 3/2	
D 4/5	3/3	5/4	4/4	
5/2	4/2	2/3	5/3	
South Quarter				
5/3	5/3	E	2/4	

2/4

5/3 2/4 2/4 3/5

2/4 2/4 3/5 3/5

2/4 3/5 3/5 2/4

$N_e, T_e, T_i, \mathbf{v}_{\perp} + \text{imaging}$

- 3 modes
- 4 beams
- 4 transmitters
- 16 receivers
- \bullet + FPI, HF

Hvsell Module

Imaging modules (Up polarization)

ロト 《聞下 《臣下 《臣下 三臣 … のべの…

ロト (日) (日) (日) (日) (日) (日) (日)

3D warm plasmas

Drake, J. F., and J. D. Huba, Phys. Rev. Lett., 58, 1987.

simulation code

- cast in 3D tilted magnetic dipole coordinates
- complete 3D potential solve (PBiCGStab)
- \bullet NO⁺, O⁺₂, O⁺, and H⁺ plus electrons
- MUSCLs
- MSISE90 + IRI2016 + PIM + HWM014(*) + E-field(*)
- $\bullet\,$ longitude $\sim\,$ local time for all independent variables
- recently ported to F90, parallelized, moved to small cluster (10x speed improvement)

simulation: low activity

2345 UT + 25 min.

2345 UT + 75 min.

しゃ 《喧 》 《画 》 《画 》 《 唱 》 《

simulation: high activity

2345 UT + 25 min.

2345 UT + 75 min.

▶ < ∄ ▶ < ≣ ▶ < ≣ ▶ ≣ ∽ Q (~ 10 / 12

animation

- ESF driven by variants on simple E×B instability. Most important nonlinearity in convective derivative in continuity equation, giving rise to plasma steepening.
- Details are critical; inclusion of shear flow, vertical currents, and non-equipotential magnetic field lines essential for accurate modeling.
- No false alarms!
- A few missed detections: occasional rogue plumes suggest nonlocal origins.
- Use beacon network to identify depletions arriving from different longitudes, latitudes.