Modeling of the Storm Time Electrodynamics: Progress and Future Challenges

Naomi Maruyama and Bela Fejer

Acknowledgements: Art Richmond, Astrid Maute, Tim Fuller-Rowell, Dave Anderson, Stan Sazykin, Dick Wolf, Frank Toffoletto, Bob Spiro, and more

Outline

- Why study low latitude E -field and drifts?
- Source of the low-/mid-latitude storm time E-field: Prompt penetration(PP) and Disturbance Dynamo(DD)
- Prompt penetration(PP): Jaggi and Wolf, 1973
- Disturbance Dynamo(DD): Blanc and Richmond, 1980
- Empirical DD model
- Non-Linear Effect caused by combining PP&DD
- Possible feedback from DD to PP
- Unsolved Problems
- Summary and Future Work

Why Study Low-Latitude Electric Fields and Drifts?

Massive plasma redistribution: 2003-10-30 (Halloween Storm)

[Mannucci et al., 2005]

caused mainly by the storm time Efield [*Lin et al., 2005*].
Accurate prediction of the storm time Efields is needed

Equatorial Storm Time Plasma Drift: 2004-11-9

Jicamarca Radio Observatory, JRO Incoherent Scatter Radar

120m/s largest daytime drift ever measured by radar At ionospheric heights: E=1mV/m => V=40m/s (equator)

Equatorial Spread-F

[Woodman and LaHoz 1976]

Large post midnight ionospheric depletions cause scintillations

Low-/Mid-Latitude Disturbance E-field 2 Processes:

- Prompt Penetration (PP) [Jaggi and Wolf, 1973]
- Disturbance dynamo (DD) [Blanc and Richmond, 1980]

[Fejer et al., 2007]

Prompt Penetration (PP) [Jaggi and Wolf, 1973]

High Latitude Potential

03/17/2015 Time = 08:00:00

Northern Hemisphere

[courtesy from CCMC: SWMF+RCM]

Ionospheric Current System

IMF Bz Southward Turning
R1 > R2 (Undershielding)
Dawn to Dusk E-field
Day: Eastward E-field
Night: Westward

IMF Bz Northward Turning
R2 > R1 (Overshielding)
Dusk to Dawn E-field
Day: Westward
Night: Eastward

PP time scale < ~ 1hr (shielding established)

Disturbance Dynamo(DD) [Blanc and Richmond, 1980]

QUIET

MLT [hrs]

0.05 [A/m]

Disturbed Neutral Wind

Equatorial DD Drift Empirical Model

Drift Disturbance vs. Time Delay from Energy Deposition

- 1) 2-3h: dynamo action of fast traveling equatorward wind surges [e.g., Fuller-Rowell et al., 2002];
- 2) 3-12h: electro-dynamic action of storm-enhanced high latitude equatorward winds [Blanc and Richmond, 1980];
- 3) One day after: combined effects of storm-driven equatorward winds and conductivity variations (composition changes) [Scherliess and Fejer., 1997]

Equatorial DD Vertical Drift Model as a function of AE

- 9 Normalized Cubic B-Splines
- Time delay(τ) from energy deposition(AE) is considered

[Scherliess and Fejer, 1997]

Difficult to distinguish PP vs. DD in observations

Observed PP

- Observed PP from the ISR chains show the instantaneous reversal of the post-midnight drift
- (RHS)Rapid DD response happens globally in ~2.5hrs
- PP & DD have comparable magnitudes at night
- Make separation of the 2 mechanisms more difficult
- Makes obs. Interpretation more difficult

Storm

Quiet

Coupled Thermosphere Ionosphere Plasmasphere self-consistent electrodynamics (CTIPe) [Fuller-Rowell et al., 1970; Millward et al., 2001]

Basic Components:

- Global thermosphere 80 500 km, solves momentum, energy, composition, etc. V_x, V_y, V_z, T_n, O, O₂, N₂,
- High latitude ionosphere 80 -10,000 km, solves continuity, momentum, energy, etc. O⁺, H⁺, O₂⁺, NO⁺, N₂⁺, N⁺, V_i, T_i,
- Plasmasphere, and mid and low latitude ionosphere
- Self-consistent electrodynamics (E_{DD} only)

Model Inputs:

- solar UV/EUV, Tidal forcing
- TIROS/NOAA Auroral precipitation
- Weimer convection E-field

Neutral Wind

Electron Density

Rice Convection Model (RCM) [Wolf et al., 1983]

Conv. + Cor.

Basic Equations:

- Adiabatic drift equations in the inner magnetosphere (gradient & curvature drift) \Rightarrow pressure gradients \Rightarrow J_{//} (Vasyliunas equation: $J_{//} + J_{PERP} = 0)$
- Ionospheric current conservation equation: div J = 0 (E_{PP} only)

Model Inputs:

- Magnetospheric B-field
- Plasma sheet N and T
- Cross Polar Cap Potential (CPCP)
- Ionospheric Conductance from IRI/MSIS

Pressure distribution

RCM J_{//} provides shielding

Possible Feedback between PP & DD

[Maruyama et al., 2005]

Model can reproduce observed Storm Time Drift (E-fields)

Reasonable agreement: early phase & moderate storm

- Large discrepancy: super storm later phase
- Possible feedback between PP&DD? (coupling might help?)
- CPCP Comparable: (A)4.5UT=>175kV; (B)15UT=>160kV
- Why smaller drift for (B)15UT?

[Maruyama et al., 2007]

Coupling RCM & CTIPe [Maruyama et al., 2011]

2 sources of Disturbed E-fields Identified: PP & DD

Disturbed I-T feedbacks to E-field

• Magnitude of the Disturbed Efield is much smaller at (B), becoming even negative as early as ~+45 min.

Latitude profile is modified at (B)
because of DD effect (disturbed
I-T) [Huang et al., 2005] in addition to stronger magnetospheric shielding.

Disturbed Eastward E-fields Temporal Evolution

[Maruyama et al., 2011]

Unsolved Problems

- Separating out PP and DD under Overshielding
- Midlatitude storm time electric field needs more investigation
- Ground Based magnetometers need to be used more often
- Impact of lower atmospheric forcing on storm time electric field
- CME vs. CIR
- IMF By effect

Overshielding Condition: IMF Bz northward turning can confuse DD [*e.g., Fejer et al*, 1986; Spiro et al., 1988]

Reversed convection explained by Overshielding

magnetospheric convection could create electric field changes inside the plasmasphere.

[Kelley, 1989]

[Kelley, 1989]

Midlatitude Storm Time Disturbance Needs Investigation: Why Westward Drift Dominates?

Midlatitude DD Zonal Drifts

[[]Scherliess and Fejer, 1998]

- Seasonal/longitudinal dependence of midlatitude DD E-fields and currents has not been determined.
- PP and steady state leakage of high latitude E- fields makes the identification of DD E- fields difficult even during quiet time
- IMF By effects cause large changes in the perturbation electric fields.
- Why westward drift dominates?

uyama et al 2013]

Wind Drives Extended Westward Drift

not seen in the simulation without wind effect.

DD Seasonal dependence From Magnetometers

[Yamasaki and Kosch, 2014]

