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Outline

• Why	study	low	latitude	E -field	and	drifts?
• Source	of	the	low-/mid-latitude	storm	time	E-field:	Prompt	penetration(PP)	
and	Disturbance	Dynamo(DD)

• Prompt	penetration(PP):	Jaggi and	Wolf,	1973
• Disturbance	Dynamo(DD):	Blanc	and	Richmond,	1980
• Empirical	DD	model
• Non-Linear	Effect	caused	by	combining	PP&DD
• Possible	feedback	from	DD	to	PP
• Unsolved	Problems
• Summary	and	Future	Work



Why	Study	Low-Latitude	Electric	Fields	and	Drifts?

[Mannucci	et	al.,	2005]

Massive	plasma	redistribution:	2003-10-30	(Halloween	Storm)

• caused	mainly	by	
the	storm	time	E-
field	[Lin	et	al.,	2005].
• Accurate	prediction	
of	the	storm	time	E-
fields	is	needed

[Basu et	al	2001]

F-layer	biteout:	2000-7-15	(Bastille	day	Storm)
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Equatorial	Storm	Time	Plasma	Drift:	2004-11-9

[Fejer et	al.,	2007]

Low-/Mid-Latitude	Disturbance	E-field	2 Processes:
• Prompt	Penetration	(PP)	[Jaggi and	Wolf,	

1973]
• Disturbance	dynamo	(DD) [Blanc	and	

Richmond,	1980]

Jicamarca Radio	Observatory,	JRO
Incoherent	Scatter	Radar

Large	post	midnight	
ionospheric	depletions	
cause	scintillations

[Woodman	and	LaHoz 1976]

Equatorial	Spread-F

120m/s	largest	daytime	drift	ever	
measured	by	radar
At	ionospheric	heights:	
E=1mV/m	=>	V=40m/s	(equator)	
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Prompt	Penetration	(PP)	[Jaggi and	Wolf,	1973]

[Richmond	et	al]

IMF	Bz Northward	Turning
R2 >	R1	(Overshielding)
Dusk	to	Dawn	E-field
Day:	Westward
Night:	Eastward

IMF	Bz Southward	Turning
R1 >	R2	(Undershielding)
Dawn	to	Dusk	E-field
Day:	Eastward	E-field
Night:	Westward

Ionospheric	Current	System

PP	time	scale	<	~	1hr	(shielding	established)

High	Latitude	Potential

[courtesy	from	CCMC:	
SWMF+RCM]



Disturbance	Dynamo(DD)	[Blanc	and	Richmond,1980]
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[Kohta et	al.,	2005]

 

 

Disturbance	Dynamo	Model

Magnetometer	Equivalent	Current



Equatorial	DD	Drift	Empirical	Model

[Scherliess and	Fejer,	1997]

• 9	Normalized	Cubic	B-Splines
• Time	delay(𝜏)	from	energy	deposition(AE)	is	considered

1) 2-3h:	dynamo	action	of	fast	traveling	equatorward	wind	surges	[e.g.,	Fuller-
Rowell	et	al.,	2002];

2) 3-12h:	electro-dynamic	action	of	storm-enhanced	high	latitude	
equatorward	winds	[Blanc	and	Richmond,	1980];

3) One	day	after:	combined	effects	of	storm-driven	equatorward	winds	and	
conductivity	variations	(composition	changes)	[Scherliess and	Fejer.,	1997]	

Drift	Disturbance	vs.	Time	Delay	from	
Energy	Deposition	

Equatorial	DD	Vertical	Drift	Model		as	a	function	of	AE



Difficult	to	distinguish	PP	vs.	DD	in	observations

• Observed	PP	from	the	ISR	chains	show	the	
instantaneous	reversal	of	the	post-midnight	
drift

• (RHS)Rapid	DD	response	happens	globally	in	
~2.5hrs

• PP	&	DD	have	comparable	magnitudes	at	
night

• Make	separation	of	the	2	mechanisms	more	
difficult

• Makes	obs.	Interpretation	more	difficult

Observed	PP

Rapid	DD	Response	(CTIPe)

[Kelley,	1989] [Fuller-Rowell	et	al.,	2008]
3LT Storm

Quiet



Basic	Components:
v Global	thermosphere	80	- 500	km,	solves	momentum,	energy,	

composition,	etc.	Vx,	Vy,	Vz,	Tn,	O,	O2,	N2,	….

v High	latitude	ionosphere	80	-10,000	km,	solves	continuity,	
momentum,	energy,	etc.	O+,	H+,	O2

+,	NO+,	N2
+,	N+,	Vi,	Ti,

v Plasmasphere,	and	mid	and	low	latitude ionosphere
v Self-consistent	electrodynamics	(EDD only)

Model	Inputs:
§ solar	UV/EUV,	Tidal	forcing
§ TIROS/NOAA	Auroral	precipitation
§Weimer	convection	E-field

Electron	Density

Neutral	Wind

Coupled	Thermosphere	Ionosphere	Plasmasphere	self-consistent	
electrodynamics	(CTIPe) [Fuller-Rowell	et	al.,	1970;	Millward	et	al.,	2001]



Rice	Convection	Model	(RCM)	[Wolf	et	al.,	1983]

Basic	Equations:

v Adiabatic	drift	equations	in	the	inner	
magnetosphere	(gradient	&	curvature	drift)

vpressure	gradientsè J// (Vasyliunas	equation:	
J//		+	JPERP =	0)

v Ionospheric	current	conservation	equation:	
divJ =	0	(EPP only)

Model	Inputs:
§Magnetospheric B-field
§ Plasma	sheet	N and	T
§ Cross	Polar	Cap	Potential	(CPCP)
§ Ionospheric	Conductance	from	IRI/MSIS

Pressure	distribution

Field	aligned	current (J//)

+++

- - -

RCM	J// provides	
shielding

Positive	Energetic	Particles

Negative	Energetic	Particles

Low	Energy	Particles

Conv.	+ Cor.



LON=289

LON=127

2001-3-31

-----:	Quiet	time

___:	Disturbance	Dynamo	only	(Weimer)

___:	Penetration	only	(RCM)	

___:	both	Disturbance	Dynamo	(Weimer)	&	
Penetration	(RCM)

Possible	Feedback	between	
PP	&	DD

4	CTIPe Runs:

0UT 24UT

• Nightside:	Both	PP and	DD	effects	comparable.

• DD	+	PP /= Total	(non-linear	effect)

• DD	modified	by	including	PP	through	changing	Σ &	wind.

[Maruyama	et	al.,	2005]

TotalE =	RCM	EPP	+ CTIPe EDD



Model	can	reproduce	observed	Storm	Time	Drift	(E-fields)

• Reasonable	agreement:	early	phase	&	moderate	storm
• Large	discrepancy:	super	storm	later	phase
• Possible	feedback	between	PP&DD?	(coupling	might	help?)
• CPCP	Comparable:		(A)4.5UT=>175kV;	(B)15UT=>160kV
• Why	smaller	drift	for	(B)15UT?

2002-4-17	(Moderate	storm	-150nT)2001-3-31	(Super	storm	-400nT)

[Maruyama	et	al.,	2007]Observations Storm Quiet
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Coupling	RCM &	CTIPe [Maruyama	et	al.,	2011]

Hot Plasma transport 

in E, B fields

Eq. of J 
continuity E-field

Ionospheric Ne, 
Te
Ion Ti, composition
Field-aligned Vi
Conductance ∑

Thermospheric
neutral density,
composition 
wind velocity fields

Auroral Precipitation

J//	(PP	+	Shielding) E

EUn ∑ (DD)

RCM

CTIP

Potential	
(dynamo)	
Solver



2	sources	of	Disturbed	E-fields	
Identified:	PP &	DD

(A)	+0.5hrs (B)	+1.5hrs (C)	+2.5hrs

MLT	[hrs]

Ex
B	
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ift
	[m
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]

PP DD

[Maruyama	et	al.,	2011]



Disturbed	I-T	feedbacks	to	E-field

Disturbed	Eastward	E-fields	Temporal	Evolution

• Magnitude	of	the	Disturbed	E-
field	is	much	smaller	at	(B),	
becoming	even	negative	as	early	
as	~+45	min.
• Latitude	profile	is	modified	at	(B)
• because	of	DD	effect	(disturbed	
I-T)	[Huang	et	al.,	2005]	in	addition	
to	stronger	magnetospheric
shielding.

(A) (B)

[Maruyama	et	al.,	2011]
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Unsolved	Problems

• Separating	out	PP	and	DD	under	Overshielding
• Midlatitude storm	time	electric	field	needs	more	investigation
• Ground	Based	magnetometers	need	to	be	used	more	often
• Impact	of	lower	atmospheric	forcing	on	storm	time	electric	field
• CME	vs.	CIR
• IMF	By	effect



Overshielding Condition:	IMF	Bz northward	turning	can	confuse	DD
[e.g.,	Fejer et	al,	1986;	Spiro	et	al.,	1988]

[Fejer,	1986]

Classical	PP	from	ISR	obs.

[Kelley,	1989]

Rice	Convection	Model

3LT

dawn-dusk	
E-field

3LT

[Kelley,	1989]

Reversed	convection	explained	by	Overshielding



Midlatitude Storm	Time	Disturbance	Needs	Investigation:	
Why	Westward	Drift	Dominates?

[	Scherliess and	Fejer,	1998]

• Seasonal/longitudinal	dependence	of	midlatitude
DD	E-fields	and	currents	has	not	been	determined.	

• PP	and	steady	state	leakage	of	high	latitude	E- fields	
makes	the	identification	of	DD	E- fields	difficult	even	
during	quiet	time

• IMF	By	effects	cause	large	changes	in	the	
perturbation	electric	fields.

• Why	westward	drift	dominates?	

Midlatitude DD	Zonal	Drifts
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Wind	Drives	Extended	Westward	Drift

The equatorward extension of westward drift was 
not seen in the simulation without wind effect.
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DD	Seasonal	dependence	From	Magnetometers

[Yamasaki	and	Kosch,	2014]
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Ionosphere	Plasmasphere	Electrodynamics	
(IPE)	Model

[Maruyama	et	al.,	2015;	Sun	et	al.,	2015]

Ionosphere/Plasmasphere
(FLIP	1D)	[Richards	et	al]

Ne,	Ni,	Te,	Ti,	ViMSIS/
HWM

Ionospheric	
Potential	

[Richmond	et	al,	1992]
Φ,	E,	J

IGRF:	APEX	coordinates	[Richmond	1995]

21

Polar	Cap
Potential:
Weimer

Solar	EUV:
EUVAC
HEUVAC Auroral	

Precipitation

IPEWhole	
Atmosphere	

Model
80	X	170	=	13,600	flux	tubes
~3.5	Million	grid	pointsT,U,N

See	Our	Poster	today	(Tuesday)	at	4pm!


