TOWARD A GLOBAL IONOSPHERIC ELECTRODYNAMICS MODEL

J.D. Huba Plasma Physics Division Naval Research Laboratory Washington, DC 20375

CEDAR Keystone, CO June 2017

$$\nabla \cdot (\Sigma \cdot \nabla \Phi) = S(J_{\parallel}, V_n)$$

- $\Phi :$ electrostatic potential
- Σ : ionospheric conductance tensor (solar EUV and auroral)
- S: source function for the electric potential

region 1 and 2 current systems J_{\parallel} and thermospheric wind V_n are the primary drivers of the global electric field

SCHISM (IN GENERAL)

high latitude

$$\nabla \cdot (\Sigma \cdot \nabla \Phi) = S(J_{\parallel})$$

- spherical coordinates
- problematic going to equator
- $\Phi = 0$ in mid-latitude ($\sim 40^{\circ}$)
- Iow- to mid-latitude

$$\nabla \cdot (\Sigma \cdot \nabla \Phi) = S(V_n)$$

- dipole coordinates
- $\Phi = 0$ in mid-latitude ($\sim 60^{\circ}$)

- \bullet currently, low- to mid-latitude equation with $\Phi=0$ at high latitude 90°
- \bullet developing global solution of Φ for both low latitude and high latitude
- some preliminary results

DRIVERS/CONDUCTANCE

- use HWM14 for the neutral wind
- use Weimer for the region 1/2 currents
- use Hardy model for precipitation fluxes and Rees model to calculate enhanced ionization in auroral zone

METHODOLOGY

- use dipole coordinate system for potential equation
- solve potential equation with just neutral wind (Φ_V)
- solve potential equation with just region 1/2 currents using Φ_V at lower boundary (Φ_J)
- $\Phi = \Phi_V + \Phi_J$

HIGH LATITUDE POTENTIAL

weimer (left) vs sami3 (right)

EQUATORIAL E \times B VELOCITY

ELECTRON DENSITY

latitude vs altitude

SUMMARY

- reasonable first step
- yet challenges remain
 - north/south current systems different
 - open/closed field line boundary
 - matching potential across these boundaries

• results not awful (9/12/16)

- results ok-ish (9/13/16)
- results bad (10/5/16)
- aargh! low-latitude dynamics suck (11/12/16)
- seems to work (11/13/16)
- results are reasonable (11/14/16)

- results not awful (9/12/16)
- results ok-ish (9/13/16)
- results bad (10/5/16)
- aargh! low-latitude dynamics suck (11/12/16)
- seems to work (11/13/16)
- results are reasonable (11/14/16)

- results not awful (9/12/16)
- results ok-ish (9/13/16)
- results bad (10/5/16)
- aargh! low-latitude dynamics suck (11/12/16)
- seems to work (11/13/16)
- results are reasonable (11/14/16)

- results not awful (9/12/16)
- results ok-ish (9/13/16)
- results bad (10/5/16)
- aargh! low-latitude dynamics suck (11/12/16)
- seems to work (11/13/16)
- results are reasonable (11/14/16)

- results not awful (9/12/16)
- results ok-ish (9/13/16)
- results bad (10/5/16)
- aargh! low-latitude dynamics suck (11/12/16)
- seems to work (11/13/16)
- results are reasonable (11/14/16)

- results not awful (9/12/16)
- results ok-ish (9/13/16)
- results bad (10/5/16)
- aargh! low-latitude dynamics suck (11/12/16)
- seems to work (11/13/16)
- results are reasonable (11/14/16)