

Tim Duly<sup>1</sup> Mark Butala<sup>2</sup>, Dan Fisher<sup>2</sup>, & Brian Harding<sup>2</sup>

Download pyglow at:

https://github.com/timduly4/pyglow

Spire Global, Inc., Boulder, CO
University of Illinois at Urbana-Champaign, Urbana, IL

# Outline

- 1. Introduction & background (what problem we're trying to solve)
- 2. GitHub tour & installation guide
- 3. Demo with IPython
- 4. Real world application (TEC data from a GNSS-RO CubeSat satellite)
- 5. Future work

# Climatological (Empirical) models

- Often used within the upper atmosphere research community for a wide variety of applications
  - Initializing values in numerical models
  - Baseline comparisons against measured data
- Commonly derived from ground and space measurements
- Provide a "probabilistic seasonal forecast"

| Instrument                                                             | Location                                            | Height (km)                    | Years          | Local Time    | Days  | Points    | Reference               |
|------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|----------------|---------------|-------|-----------|-------------------------|
|                                                                        |                                                     |                                | Fabry-Perot In | terferometer  |       |           |                         |
| Arecibo                                                                | 18.7°N, 67.5°W                                      | 250                            | 2012-2013      | nighttime     | 428   | 29,434    | Ruan et al. [2013]      |
| Arequipa                                                               | 16.47°S, 71.49°W                                    | 250                            | 2007-2013      | nighttime     | 260   | 16,447    | Meriwether et al. [2008 |
| Jicamarca                                                              | 11.96°S, 76.86°W                                    | 250                            | 2009-2013      | nighttime     | 318   | 10,056    | Meriwether et al. [2008 |
| Movil                                                                  | 14.97°S, 74.89°W                                    | 250                            | 2011-2013      | nighttime     | 293   | 10,412    | Meriwether et al. [2008 |
| PARI <sup>a</sup>                                                      | 35.2°N, 82.85°W                                     | 250                            | 2011-2013      | nighttime     | 166   | 12,610    | Makela et al. [2012]    |
| Poker Flat <sup>b</sup>                                                | 65.1°N, 147.5°W                                     | 250                            | 2009-2011      | nighttime     | 297   | 5,983,090 | Conde and Smith [199    |
| RENOIR <sup>c</sup>                                                    | 6.89°S, 38.56°W                                     | 250                            | 2009-2012      | nighttime     | 637   | 37,301    | Makela et al. [2013]    |
| South Pole                                                             | 90.0°S                                              | 250                            | 1989–1999      | nighttime     | 1,091 | 198,560   | Hernandez et al. [1992  |
|                                                                        |                                                     |                                | Sate           | llite         |       |           |                         |
| GOCEd                                                                  | ± 83.4°                                             | 253-295                        | 2009-2012      | twilight      | 813   | 6,613,172 | Doornbos et al. [2010]  |
| <sup>a</sup> Pisgah A<br><sup>b</sup> Imaging<br><sup>c</sup> Relocata | stronomical Researd<br>FPI.<br>able Equatorial Nigh | ch Institute.<br>ttime Observa | tory of lonosp | heric Regions |       |           |                         |

Data sets contributing to the Horizontal Wind Model (HWM) 2014 climatological model [Drob et al. 2015]

# Example climatological models in pyglow

| Climatological<br>Model | Description                                      | Terms Modeled  | Reference                      |
|-------------------------|--------------------------------------------------|----------------|--------------------------------|
| IRI                     | International Reference<br>Ionosphere            | Plasma         | Bilitza and<br>Reinisch [2008] |
| MSIS                    | Mass Spectrometer<br>Incoherent Scatter<br>Radar | Neutral        | Picone [2002]                  |
| HWM                     | Horizontal Wind Model                            | Neutral Wind   | Hedin and Biondi<br>[1996]     |
| IGRF                    | International<br>Geomagnetic Reference<br>Field  | Magnetic Field | Finlay et al.<br>[2010]        |

# Access to climatological models

#### Option 1: Download, compile, and call FORTRAN source code:

#### SUBROUTINE IRI SUB(JF, JMAG, ALATI, ALONG, IYYYY, MMDD, DHOUR, HEIBEG, HEIEND, HEISTP, OUTF, OARR) JF(1:50) true/false switches for several options C INPUT: =0 geographic = 1 geomagnetic coordinates JMAG С LATITUDE NORTH AND LONGITUDE EAST IN DEGREES ALATI, ALONG С IYYYY Year as YYYY, e.g. 1985 MMDD (-DDD) DATE (OR DAY OF YEAR AS A NEGATIVE NUMBER) DHOUR LOCAL TIME (OR UNIVERSAL TIME + 25) IN DECIMAL С HOURS С HEIBEG, HEIGHT RANGE IN KM; maximal 100 heights, i.e. С HEIEND, HEISTP int((heiend-heibeg)/heistp)+1.le.100



#### Option 2: Use the Community Coordinated Modeling Center (CCMC) web interface



# pyglow



- f2py (available in numpy) is used as the "glue" between the pyglow module and the Fortran models
- Access to models under common framework enables derived parameters to be calculated (e.g., airglow emission) and synergy between models (e.g., integrating electron densities along magnetic field line)

Modules are compiled in Fortran, resulting in minor performance hits for calling each climatological modules

Could also wrap C++ functions

### GitHub tour & installation guide

#### <demo>

| This repository Sea               | rch Pull                                                    | requests Issues Mark       | ketplace Gist   |              |            | 📌 ++ 💈               |  |  |
|-----------------------------------|-------------------------------------------------------------|----------------------------|-----------------|--------------|------------|----------------------|--|--|
| timduly4 / pyglow                 |                                                             |                            | <b>O</b> U      | Inwatch - 10 | ) 🛧 Star   | r 11 ¥ Fork          |  |  |
| <> Code () Issues 6               | ी Pull requests 4 🔳                                         | Projects 0 🔲 Wiki          | Settings        | Insights 👻   |            |                      |  |  |
| oper atmosphere clima<br>d topics | tological models in Python                                  |                            |                 |              |            | Ec                   |  |  |
| 148 commits                       | ំង 5 branches                                               | © 0 releases               | <b>11</b> 4 c   | ontributors  |            | م <u>أ</u> ة MIT     |  |  |
| Iranch: master - New pul          | l request                                                   |                            | Create new file | Upload files | Find file  | Clone or download    |  |  |
| 📙 butala Storing HWM93 fe         | ortran file in the pyglow source re                         | epository                  |                 |              | Latest com | mit 4025be0 on Jan 2 |  |  |
| pyglow                            | Storing HWM93 fortran file in the pyglow source repository. |                            |                 |              |            | 5 months ago         |  |  |
| tests                             | Added tests/test_airglow.py                                 |                            |                 |              |            | 9 months ago         |  |  |
| gitignore                         | Ignore ae, kpap, and dst subdirectories.                    |                            |                 |              |            | 9 months ago         |  |  |
| License.md                        | Create License.md                                           |                            |                 |              |            | a year ago           |  |  |
| README.md                         | Added model names (instead of just acronyms).               |                            |                 |              | a year ag  |                      |  |  |
| logo.png                          | added logo                                                  |                            |                 |              |            | 4 years ag           |  |  |
| pyglow_install.sh                 | pyglow_install.sh: fixup                                    |                            |                 |              |            | 9 months ag          |  |  |
| setup.pv                          | removed update_indices(                                     | notes since that is done e | elsewhere       |              |            | 10 months ac         |  |  |

# Demo with IPython

#### <demo>



#### Real world application: TEC derived from GNSS-RO CubeSat





#### Real world application: TEC derived from GNSS-RO CubeSat



#### Real world application: TEC derived from GNSS-RO CubeSat



11

### Future work

- 1. Develop API & documentation
- 2. Unit tests

Always welcome contributions and improvements

Feel free to download, modify, and submit Pull Requests (PR) via GitHub

Download pyglow at:

https://github.com/timduly4/pyglow

Contact:

Tim Duly: timduly4@gmail.com