

The use of RCME auroral fluxes in the TIEGCM for the 17 March 2013 storm

¹R. L. Walterscheid, M. W. Chen, C. Lemon ²C.-C. Chao, S. J. Gegenheim

- 1. The Aerospace Corporation, Space Science Applications Laboratory
- 2. The Aerospace Corporation, Astrodynamics Department

What is the result of using RCME auroral fluxes in the TIEGCM for the 17 March 2013 storm?

RCM-E:

- Kp- and MLT-parameterized electron scattering due to whistler chorus [Orlova and Shprits, 2014] & plasmaspheric hiss [Orlova et al., 2014]
- RCM-E trapped and precipitating electron fluxes agree fairly well with in-situ observations for 10 August 2000 storm [*Chen et al.*, 2015] and this storm.

TIEGCM temperature difference between results with RCME auroral inputs and model default values at 250 km

		TIEGCM Kp Dependent Defaults		RCME	
		Nightside	Dayside	Nightside	Dayside
	Flux (erg cm ² s ¹)	15.3	4.2	5.56	3.62
	CE (keV)	2.0	1.5	7.84	9.76

RCME-TIEGCM density predictions vs. GOCE observations

- Density versus time for GOCE and RCME-TIEGCM at 250 km during 17 March 2013 storm
- Shows good agreement on dawn side and reasonable agreement on dusk side

Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) data produced by ESA and provided by Dr. Eric Sutton, AFRL

Comparison of In-track Residual Errors (6-day fit of TLE)

Backup up Slides

Comparison of RCM-E and MagEIS Electron Fluxes

Precipitating Electron Energy Flux, ergs/cm²

Characteristic Energy, keV

Precipitating e- characteristic energy (keV) | 2013-Mar-17 03:00 UT Precipitating e- characteristic energy (keV) | 2013-Mar-17 21:00 UT

Use RCM-E precipitating electron number flux and characteristic energy to specify auroral heating input to pre-storm and stormtime TIEGCM runs.

RCM-E (Aerospace's Version)

- Computes bounce-averaged guiding center drift of isotropic ions and electrons [*Toffoletto et al.*, 2002]
- Electric field & magnetic field are self-consistent with the plasma [Lemon et al., 2003].
- Includes a simple plasmasphere model based on simulated electron density

Electron loss models:

- (1) Strong pitch-angle scattering [Schulz, 1974]
- (2) Kp- and MLT-parameterized scattering due to whistler chorus [Orlova and Shprits, 2014] and plasmaspheric hiss [Orlova et al., 2014]

Fitted quasi-linear p. a. diffusion coefficients calculated using statistical wave properties from CRRES & Polar to functions.

Simple Plasmasphere Model:

We include a cold electron energy channel in the RCM-E.

Initial plasmasphere density is specified by *Berube et a*l. [2005].

Initial plasmapause location is specified by *Moldwin et al.* [2002].

Mean plasmasphere refilling rate for solar maximum, in units of cm⁻³/day (eq. 16 of *Denton et al.* [2012])

$$\log_{10}(dn_{e,eq}/dt) = 3.01 - 0.322 L$$

Inside plasmasphere: $n_e > 100/cc$

Plasmapause region: $10/cc < n_e < 100/cc$

Outside plasmasphere: $n_e < 10/cc$