
GeoData Python Toolset:
High Performance Python for
Geoscience
John P. Swoboda – Boston University
Michael Hirsch – Boston University
Joshua L. Semeter – Boston University

2

Dahlgren 2012

Dahlgren

3

Usual	Procedure
• Read in the data.
• Different sensors.
• Same data, different sources.

• Register the data in time and space.
• Different coordinate systems.
• Different time systems.

• Map data into a common coordinate system.
• Different interpolation/projection methods.

• Plotting
• Everything is just screwed up by then.

4

Can	We	Do	Better?
• Reuse code more effectively and reduce OTR
• Save Time!
• Save Money!

• Need to be able to use multiple sensors.

• Must be able to incorporate new sensors as data becomes
available.

• Plotting in multiple spatial dimensions.

5

GeoData
• API for using sensor data
• Reading
• Registration in time and space
• Interpolation
• Plotting

• Matplotlib for 1 and 2D
• Mayavi for 3D

• Standard format for data
• Also have methods to save out data

• New sensors/data can be used once data is in format 6

GeoData
• GeoData class abstracts a data set into an object.
• The data, location, times, coordinate systems are all attributes of

this object.

7

Mahali
• Funded research project to test the utility of a dense network

of GPS receivers.
• Use GPS Total Electron Content (TEC) measurements

• Fuse different different data sets together.
• GPS
• Optical, Allsky
• ISR

8

Mahali

9

Mahali

10

Mahali

11

References	and	Software
Software
• GitHub: jswoboda
• https://github.com/jswoboda

• GeoData
• Contributors

• John Swoboda
• Michael Hirsch
• Greg Starr
• Anna Stuhlmacher

Reference
• H. Dahlgren, G. W. Perry, and J. L. Semeter, “Space-time variability of

polar cap patches: Direct evidence for internal plasma structuring,” J.
Geophys. Res. Space Physics, 2012. 12

https://github.com/jswoboda

Using	Python	with	compiled	
code	(Fortran/C/C++)

13

F2Py (part of Numpy) allows importing Fortran easily
• Use Fortran compiler & flags of your choice
• Auto-generates import of Fortran subroutines & functions
• NO modifications necessary to Fortran code typically

• If old Fortran w/o Intents, use !f2py intent(inout)
• Typically easier than Matlab MEX

• I write new Fortran code: speed up iterative loops
• Linear algebra: tough to beat Numpy/Scipy

• Tradeoffs in ease of use / less original code modification / runtime
speed

Michael Hirsch mhirsch@bu.edu https://github.com/scienceopen 20 JUN 2016

Worthwhile	to	go	compiled?

14

• Researcher time-to-implement
• Value of Matlab & Simulink
• Iterative loops->separate function & compile
• Intel MKL now free-of-charge

• Continuum of choices
• Numba (LLVM compile of plain Python with

decorator)
• Cython (Python-like code)
• Nuitka (compile standalone executables)
• SWIG / Weave

• For embarrassingly parallel problems, run on
multiple CPU cores and/or multiple PCs via GNU
Parallel or Fabric
• Simulating basis set of monoenergetic

electron beams https://www.gnu.org/software/parallel/
Michael Hirsch mhirsch@bu.edu https://github.com/scienceopen 20 JUN 2016

Verification

15

Code without test case = broken

• Innocent changes -> surprising
impacts on program output
• compiler/OS/CPU quirk

• Python + Github + Travis CI =
free, simple, automated test
case runs
• Mac OS, Linux, (Window)
• Clang, GCC 4-6, Cmake, etc.
• Pull requests and Pushes

• Coveralls – shows percentage of
code actually executed in tests

• Examples
https://bit.ly/geotravis

Michael Hirsch mhirsch@bu.edu https://github.com/scienceopen 20 JUN 2016

